This paper presents the Global and Local Confidence Graph Neural Network (GLC-GNN), an innovative approach to graph-based anomaly detection that addresses the challenges of heterophily and camouflage in fraudulent activities. By introducing a prototype to encapsulate the global features of a graph and calculating a Global Confidence (GC) value for each node, GLC-GNN effectively distinguishes between benign and fraudulent nodes. The model leverages GC to generate attention values for message aggregation, enhancing its ability to capture both homophily and heterophily. Through extensive experiments on four open datasets, GLC-GNN demonstrates superior performance over state-of-the-art models in accuracy and convergence speed, while maintaining a compact model size and expedited training process. The integration of global and local confidence measures in GLC-GNN offers a robust solution for detecting anomalies in graphs, with significant implications for fraud detection across diverse domains.