Abstract:Large foundation models are integrated into Computer Use Agents (CUAs), enabling autonomous interaction with operating systems through graphical user interfaces (GUIs) to perform complex tasks. This autonomy introduces serious security risks: malicious instructions or visual prompt injections can trigger unsafe reasoning and cause harmful system-level actions. Existing defenses, such as detection-based blocking, prevent damage but often abort tasks prematurely, reducing agent utility. In this paper, we present MirrorGuard, a plug-and-play defense framework that uses simulation-based training to improve CUA security in the real world. To reduce the cost of large-scale training in operating systems, we propose a novel neural-symbolic simulation pipeline, which generates realistic, high-risk GUI interaction trajectories entirely in a text-based simulated environment, which captures unsafe reasoning patterns and potential system hazards without executing real operations. In the simulation environment, MirrorGuard learns to intercept and rectify insecure reasoning chains of CUAs before they produce and execute unsafe actions. In real-world testing, extensive evaluations across diverse benchmarks and CUA architectures show that MirrorGuard significantly mitigates security risks. For instance, on the ByteDance UI-TARS system, it reduces the unsafe rate from 66.5% to 13.0% while maintaining a marginal false refusal rate (FRR). In contrast, the state-of-the-art GuardAgent only achieves a reduction to 53.9% and suffers from a 15.4% higher FRR. Our work proves that simulation-derived defenses can provide robust, real-world protection while maintaining the fundamental utility of the agent. Our code and model are publicly available at https://bmz-q-q.github.io/MirrorGuard/.
Abstract:Web Agents are increasingly deployed to perform complex tasks in real web environments, yet their security evaluation remains fragmented and difficult to standardize. We present WebTrap Park, an automated platform for systematic security evaluation of Web Agents through direct observation of their concrete interactions with live web pages. WebTrap Park instantiates three major sources of security risk into 1,226 executable evaluation tasks and enables action based assessment without requiring agent modification. Our results reveal clear security differences across agent frameworks, highlighting the importance of agent architecture beyond the underlying model. WebTrap Park is publicly accessible at https://security.fudan.edu.cn/webagent and provides a scalable foundation for reproducible Web Agent security evaluation.
Abstract:Web agents, powered by large language models (LLMs), are increasingly deployed to automate complex web interactions. The rise of open-source frameworks (e.g., Browser Use, Skyvern-AI) has accelerated adoption, but also broadened the attack surface. While prior research has focused on model threats such as prompt injection and backdoors, the risks of social engineering remain largely unexplored. We present the first systematic study of social engineering attacks against web automation agents and design a pluggable runtime mitigation solution. On the attack side, we introduce the AgentBait paradigm, which exploits intrinsic weaknesses in agent execution: inducement contexts can distort the agent's reasoning and steer it toward malicious objectives misaligned with the intended task. On the defense side, we propose SUPERVISOR, a lightweight runtime module that enforces environment and intention consistency alignment between webpage context and intended goals to mitigate unsafe operations before execution. Empirical results show that mainstream frameworks are highly vulnerable to AgentBait, with an average attack success rate of 67.5% and peaks above 80% under specific strategies (e.g., trusted identity forgery). Compared with existing lightweight defenses, our module can be seamlessly integrated across different web automation frameworks and reduces attack success rates by up to 78.1% on average while incurring only a 7.7% runtime overhead and preserving usability. This work reveals AgentBait as a critical new threat surface for web agents and establishes a practical, generalizable defense, advancing the security of this rapidly emerging ecosystem. We reported the details of this attack to the framework developers and received acknowledgment before submission.




Abstract:Successful self-replication under no human assistance is the essential step for AI to outsmart the human beings, and is an early signal for rogue AIs. That is why self-replication is widely recognized as one of the few red line risks of frontier AI systems. Nowadays, the leading AI corporations OpenAI and Google evaluate their flagship large language models GPT-o1 and Gemini Pro 1.0, and report the lowest risk level of self-replication. However, following their methodology, we for the first time discover that two AI systems driven by Meta's Llama31-70B-Instruct and Alibaba's Qwen25-72B-Instruct, popular large language models of less parameters and weaker capabilities, have already surpassed the self-replicating red line. In 50% and 90% experimental trials, they succeed in creating a live and separate copy of itself respectively. By analyzing the behavioral traces, we observe the AI systems under evaluation already exhibit sufficient self-perception, situational awareness and problem-solving capabilities to accomplish self-replication. We further note the AI systems are even able to use the capability of self-replication to avoid shutdown and create a chain of replica to enhance the survivability, which may finally lead to an uncontrolled population of AIs. If such a worst-case risk is let unknown to the human society, we would eventually lose control over the frontier AI systems: They would take control over more computing devices, form an AI species and collude with each other against human beings. Our findings are a timely alert on existing yet previously unknown severe AI risks, calling for international collaboration on effective governance on uncontrolled self-replication of AI systems.




Abstract:Automated driving systems rely on 3D object detectors to recognize possible obstacles from LiDAR point clouds. However, recent works show the adversary can forge non-existent cars in the prediction results with a few fake points (i.e., appearing attack). By removing statistical outliers, existing defenses are however designed for specific attacks or biased by predefined heuristic rules. Towards more comprehensive mitigation, we first systematically inspect the mechanism of recent appearing attacks: Their common weaknesses are observed in crafting fake obstacles which (i) have obvious differences in the local parts compared with real obstacles and (ii) violate the physical relation between depth and point density. In this paper, we propose a novel plug-and-play defensive module which works by side of a trained LiDAR-based object detector to eliminate forged obstacles where a major proportion of local parts have low objectness, i.e., to what degree it belongs to a real object. At the core of our module is a local objectness predictor, which explicitly incorporates the depth information to model the relation between depth and point density, and predicts each local part of an obstacle with an objectness score. Extensive experiments show, our proposed defense eliminates at least 70% cars forged by three known appearing attacks in most cases, while, for the best previous defense, less than 30% forged cars are eliminated. Meanwhile, under the same circumstance, our defense incurs less overhead for AP/precision on cars compared with existing defenses. Furthermore, We validate the effectiveness of our proposed defense on simulation-based closed-loop control driving tests in the open-source system of Baidu's Apollo.