Abstract:As wireless communication advances toward the 6G era, the demand for ultra-reliable, high-speed, and ubiquitous connectivity is driving the exploration of new degrees-of-freedom (DoFs) in communication systems. Among the key enabling technologies, Movable Antennas (MAs) integrated into Flexible Cylindrical Arrays (FCLA) have shown great potential in optimizing wireless communication by providing spatial flexibility. This paper proposes an innovative optimization framework that leverages the dynamic mobility of FCLAs to improve communication rates and overall system performance. By employing Fractional Programming (FP) for alternating optimization of beamforming and antenna positions, the system enhances throughput and resource utilization. Additionally, a novel Constrained Grid Search-Based Adaptive Moment Estimation Algorithm (CGS-Adam) is introduced to optimize antenna positions while adhering to antenna spacing constraints. Extensive simulations validate that the proposed system, utilizing movable antennas, significantly outperforms traditional fixed antenna optimization, achieving up to a 31\% performance gain in general scenarios. The integration of FCLAs in wireless networks represents a promising solution for future 6G systems, offering improved coverage, energy efficiency, and flexibility.