Abstract:Software vulnerabilities are flaws in computer software systems that pose significant threats to the integrity, security, and reliability of modern software and its application data. These vulnerabilities can lead to substantial economic losses across various industries. Manual vulnerability repair is not only time-consuming but also prone to errors. To address the challenges of vulnerability repair, researchers have proposed various solutions, with learning-based automatic vulnerability repair techniques gaining widespread attention. However, existing methods often focus on learning more vulnerability data to improve repair outcomes, while neglecting the diverse characteristics of vulnerable code, and suffer from imprecise vulnerability localization.To address these shortcomings, this paper proposes CRepair, a CVAE-based automatic vulnerability repair technology aimed at fixing security vulnerabilities in system code. We first preprocess the vulnerability data using a prompt-based method to serve as input to the model. Then, we apply causal inference techniques to map the vulnerability feature data to probability distributions. By employing multi-sample feature fusion, we capture diverse vulnerability feature information. Finally, conditional control is used to guide the model in repairing the vulnerabilities.Experimental results demonstrate that the proposed method significantly outperforms other benchmark models, achieving a perfect repair rate of 52%. The effectiveness of the approach is validated from multiple perspectives, advancing AI-driven code vulnerability repair and showing promising applications.
Abstract:In this paper we study the task of a single-view image-guided point cloud completion. Existing methods have got promising results by fusing the information of image into point cloud explicitly or implicitly. However, given that the image has global shape information and the partial point cloud has rich local details, We believe that both modalities need to be given equal attention when performing modality fusion. To this end, we propose a novel dual-channel modality fusion network for image-guided point cloud completion(named DMF-Net), in a coarse-to-fine manner. In the first stage, DMF-Net takes a partial point cloud and corresponding image as input to recover a coarse point cloud. In the second stage, the coarse point cloud will be upsampled twice with shape-aware upsampling transformer to get the dense and complete point cloud. Extensive quantitative and qualitative experimental results show that DMF-Net outperforms the state-of-the-art unimodal and multimodal point cloud completion works on ShapeNet-ViPC dataset.
Abstract:In recent years, Massive Open Online Courses (MOOCs) have gained significant traction as a rapidly growing phenomenon in online learning. Unlike traditional classrooms, MOOCs offer a unique opportunity to cater to a diverse audience from different backgrounds and geographical locations. Renowned universities and MOOC-specific providers, such as Coursera, offer MOOC courses on various subjects. Automated assessment tasks like grade and early dropout predictions are necessary due to the high enrollment and limited direct interaction between teachers and learners. However, current automated assessment approaches overlook the structural links between different entities involved in the downstream tasks, such as the students and courses. Our hypothesis suggests that these structural relationships, manifested through an interaction graph, contain valuable information that can enhance the performance of the task at hand. To validate this, we construct a unique knowledge graph for a large MOOC dataset, which will be publicly available to the research community. Furthermore, we utilize graph embedding techniques to extract latent structural information encoded in the interactions between entities in the dataset. These techniques do not require ground truth labels and can be utilized for various tasks. Finally, by combining entity-specific features, behavioral features, and extracted structural features, we enhance the performance of predictive machine learning models in student assignment grade prediction. Our experiments demonstrate that structural features can significantly improve the predictive performance of downstream assessment tasks. The code and data are available in \url{https://github.com/DSAatUSU/MOOPer_grade_prediction}