Abstract:Quantum random number generators (QRNG) based on continuous variable (CV) quantum fluctuations offer great potential for their advantages in measurement bandwidth, stability and integrability. More importantly, it provides an efficient and extensible path for significant promotion of QRNG generation rate. During this process, real-time randomness extraction using information theoretically secure randomness extractors is vital, because it plays critical role in the limit of throughput rate and implementation cost of QRNGs. In this work, we investigate parallel and real-time realization of several Toeplitz-hashing extractors within one field-programmable gate array (FPGA) for parallel QRNG. Elaborate layout of Toeplitz matrixes and efficient utilization of hardware computing resource in the FPGA are emphatically studied. Logic source occupation for different scale and quantity of Toeplitz matrices is analyzed and two-layer parallel pipeline algorithm is delicately designed to fully exploit the parallel algorithm advantage and hardware source of the FPGA. This work finally achieves a real-time post-processing rate of QRNG above 8 Gbps. Matching up with integrated circuit for parallel extraction of multiple quantum sideband modes of vacuum state, our demonstration shows an important step towards chip-based parallel QRNG, which could effectively improve the practicality of CV QRNGs, including device trusted, device-independent, and semi-device-independent schemes.
Abstract:Ensemble smoother (ES) has been widely used in various research fields to reduce the uncertainty of the system-of-interest. However, the commonly-adopted ES method that employs the Kalman formula, that is, ES$_\text{(K)}$, does not perform well when the probability distributions involved are non-Gaussian. To address this issue, we suggest to use deep learning (DL) to derive an alternative update scheme for ES in complex data assimilation applications. Here we show that the DL-based ES method, that is, ES$_\text{(DL)}$, is more general and flexible. In this new update scheme, a high volume of training data are generated from a relatively small-sized ensemble of model parameters and simulation outputs, and possible non-Gaussian features can be preserved in the training data and captured by an adequate DL model. This new variant of ES is tested in two subsurface characterization problems with or without Gaussian assumptions. Results indicate that ES$_\text{(DL)}$ can produce similar (in the Gaussian case) or even better (in the non-Gaussian case) results compared to those from ES$_\text{(K)}$. The success of ES$_\text{(DL)}$ comes from the power of DL in extracting complex (including non-Gaussian) features and learning nonlinear relationships from massive amounts of training data. Although in this work we only apply the ES$_\text{(DL)}$ method in parameter estimation problems, the proposed idea can be conveniently extended to analysis of model structural uncertainty and state estimation in real-time forecasting studies.