Abstract:Pruning has been widely used to slim convolutional neural network (CNN) models to achieve a good trade-off between accuracy and model size so that the pruned models become feasible for power-constrained devices such as mobile phones. This process can be automated to avoid the expensive hand-crafted efforts and to explore a large pruning space automatically so that the high-performance pruning policy can be achieved efficiently. Nowadays, reinforcement learning (RL) and Bayesian optimization (BO)-based auto pruners are widely used due to their solid theoretical foundation, universality, and high compressing quality. However, the RL agent suffers from long training times and high variance of results, while the BO agent is time-consuming for high-dimensional design spaces. In this work, we propose an enhanced BO agent to obtain significant acceleration for auto pruning in high-dimensional design spaces. To achieve this, a novel clustering algorithm is proposed to reduce the dimension of the design space to speedup the searching process. Then, a roll-back algorithm is proposed to recover the high-dimensional design space so that higher pruning accuracy can be obtained. We validate our proposed method on ResNet, MobileNet, and VGG models, and our experiments show that the proposed method significantly improves the accuracy of BO when pruning very deep CNN models. Moreover, our method achieves lower variance and shorter time than the RL-based counterpart.
Abstract:Recently, neural network compression schemes like channel pruning have been widely used to reduce the model size and computational complexity of deep neural network (DNN) for applications in power-constrained scenarios such as embedded systems. Reinforcement learning (RL)-based auto-pruning has been further proposed to automate the DNN pruning process to avoid expensive hand-crafted work. However, the RL-based pruner involves a time-consuming training process and the high expense of each sample further exacerbates this problem. These impediments have greatly restricted the real-world application of RL-based auto-pruning. Thus, in this paper, we propose an efficient auto-pruning framework which solves this problem by taking advantage of the historical data from the previous auto-pruning process. In our framework, we first boost the convergence of the RL-pruner by transfer learning. Then, an augmented transfer learning scheme is proposed to further speed up the training process by improving the transferability. Finally, an assistant learning process is proposed to improve the sample efficiency of the RL agent. The experiments have shown that our framework can accelerate the auto-pruning process by 1.5-2.5 times for ResNet20, and 1.81-2.375 times for other neural networks like ResNet56, ResNet18, and MobileNet v1.