Abstract:Gait datasets are essential for gait research. However, this paper observes that present benchmarks, whether conventional constrained or emerging real-world datasets, fall short regarding covariate diversity. To bridge this gap, we undertake an arduous 20-month effort to collect a cross-covariate gait recognition (CCGR) dataset. The CCGR dataset has 970 subjects and about 1.6 million sequences; almost every subject has 33 views and 53 different covariates. Compared to existing datasets, CCGR has both population and individual-level diversity. In addition, the views and covariates are well labeled, enabling the analysis of the effects of different factors. CCGR provides multiple types of gait data, including RGB, parsing, silhouette, and pose, offering researchers a comprehensive resource for exploration. In order to delve deeper into addressing cross-covariate gait recognition, we propose parsing-based gait recognition (ParsingGait) by utilizing the newly proposed parsing data. We have conducted extensive experiments. Our main results show: 1) Cross-covariate emerges as a pivotal challenge for practical applications of gait recognition. 2) ParsingGait demonstrates remarkable potential for further advancement. 3) Alarmingly, existing SOTA methods achieve less than 43% accuracy on the CCGR, highlighting the urgency of exploring cross-covariate gait recognition. Link: https://github.com/ShinanZou/CCGR.
Abstract:Gait recognition is a biometric technology that has received extensive attention. Most existing gait recognition algorithms are unimodal, and a few multimodal gait recognition algorithms perform multimodal fusion only once. None of these algorithms may fully exploit the complementary advantages of the multiple modalities. In this paper, by considering the temporal and spatial characteristics of gait data, we propose a multi-stage feature fusion strategy (MSFFS), which performs multimodal fusions at different stages in the feature extraction process. Also, we propose an adaptive feature fusion module (AFFM) that considers the semantic association between silhouettes and skeletons. The fusion process fuses different silhouette areas with their more related skeleton joints. Since visual appearance changes and time passage co-occur in a gait period, we propose a multiscale spatial-temporal feature extractor (MSSTFE) to learn the spatial-temporal linkage features thoroughly. Specifically, MSSTFE extracts and aggregates spatial-temporal linkages information at different spatial scales. Combining the strategy and modules mentioned above, we propose a multi-stage adaptive feature fusion (MSAFF) neural network, which shows state-of-the-art performance in many experiments on three datasets. Besides, MSAFF is equipped with feature dimensional pooling (FD Pooling), which can significantly reduce the dimension of the gait representations without hindering the accuracy. https://github.com/ShinanZou/MSAFF