Abstract:We introduced "Presidifussion," a novel approach to learning and replicating the unique style of calligraphy of President Xu, using a pretrained diffusion model adapted through a two-stage training process. Initially, our model is pretrained on a diverse dataset containing works from various calligraphers. This is followed by fine-tuning on a smaller, specialized dataset of President Xu's calligraphy, comprising just under 200 images. Our method introduces innovative techniques of font image conditioning and stroke information conditioning, enabling the model to capture the intricate structural elements of Chinese characters. The effectiveness of our approach is demonstrated through a comparison with traditional methods like zi2zi and CalliGAN, with our model achieving comparable performance using significantly smaller datasets and reduced computational resources. This work not only presents a breakthrough in the digital preservation of calligraphic art but also sets a new standard for data-efficient generative modeling in the domain of cultural heritage digitization.
Abstract:Because of the complicated mechanism of ankle injury, it is very difficult to diagnose ankle fracture in clinic. In order to simplify the process of fracture diagnosis, an automatic diagnosis model of ankle fracture was proposed. Firstly, a tibia-fibula segmentation network is proposed for the joint tibiofibular region of the ankle joint, and the corresponding segmentation dataset is established on the basis of fracture data. Secondly, the image registration method is used to register the bone segmentation mask with the normal bone mask. Finally, a semi-supervised classifier is constructed to make full use of a large number of unlabeled data to classify ankle fractures. Experiments show that the proposed method can segment fractures with fracture lines accurately and has better performance than the general method. At the same time, this method is superior to classification network in several indexes.