Abstract:This paper presents the UGSim, a simulator for buoyancy-driven gliders, with a LQR control strategy, and a recursive guidance system. Building on the top of the DAVE and the UUVsim, it is designed to address unique challenges that come from the complex hydrodynamic and hydrostatic impacts on buoyancy-driven gliders, which conventional robotics simulators can't deal with. Since distinguishing features of the class of vehicles, general controllers and guidance systems developed for underwater robotics are infeasible. The simulator is provided to accelerate the development and the evaluation of algorithms that would otherwise require expensive and time-consuming operations at sea. It consists of a basic kinetic module, a LQR control module and a recursive guidance module, which allows the user to concentrate on the single problem rather than the whole robotics system and the software infrastructure. We demonstrate the usage of the simulator through an example, loading the configuration of the buoyancy-driven glider named Petrel-II, presenting its dynamics simulation, performances of the control strategy and the guidance system.
Abstract:Photoplethysmography (PPG) is a highly promising device due to its advantages in portability, user-friendly operation, and non-invasive capabilities to measure a wide range of physiological information. Recent advancements in deep learning have demonstrated remarkable outcomes by leveraging PPG signals for tasks related to personal health management and other multifaceted applications. In this review, we systematically reviewed papers that applied deep learning models to process PPG data between January 1st of 2017 and July 31st of 2023 from Google Scholar, PubMed and Dimensions. Each paper is analyzed from three key perspectives: tasks, models, and data. We finally extracted 193 papers where different deep learning frameworks were used to process PPG signals. Based on the tasks addressed in these papers, we categorized them into two major groups: medical-related, and non-medical-related. The medical-related tasks were further divided into seven subgroups, including blood pressure analysis, cardiovascular monitoring and diagnosis, sleep health, mental health, respiratory monitoring and analysis, blood glucose analysis, as well as others. The non-medical-related tasks were divided into four subgroups, which encompass signal processing, biometric identification, electrocardiogram reconstruction, and human activity recognition. In conclusion, significant progress has been made in the field of using deep learning methods to process PPG data recently. This allows for a more thorough exploration and utilization of the information contained in PPG signals. However, challenges remain, such as limited quantity and quality of publicly available databases, a lack of effective validation in real-world scenarios, and concerns about the interpretability, scalability, and complexity of deep learning models. Moreover, there are still emerging research areas that require further investigation.