Abstract:Recent advancements in brain-computer interface (BCI) technology have emphasized the promise of imagined speech and visual imagery as effective paradigms for intuitive communication. This study investigates the classification performance and brain connectivity patterns associated with these paradigms, focusing on decoding accuracy across selected word classes. Sixteen participants engaged in tasks involving thirteen imagined speech and visual imagery classes, revealing above-chance classification accuracy for both paradigms. Variability in classification accuracy across individual classes highlights the influence of sensory and motor associations in imagined speech and vivid visual associations in visual imagery. Connectivity analysis further demonstrated increased functional connectivity in language-related and sensory regions for imagined speech, whereas visual imagery activated spatial and visual processing networks. These findings suggest the potential of imagined speech and visual imagery as an intuitive and scalable paradigm for BCI communication when selecting optimal word classes. Further exploration of the decoding outcomes for these two paradigms could provide insights for practical BCI communication.
Abstract:Interpreting human neural signals to decode static speech intentions such as text or images and dynamic speech intentions such as audio or video is showing great potential as an innovative communication tool. Human communication accompanies various features, such as articulatory movements, facial expressions, and internal speech, all of which are reflected in neural signals. However, most studies only generate short or fragmented outputs, while providing informative communication by leveraging various features from neural signals remains challenging. In this study, we introduce a dynamic neural communication method that leverages current computer vision and brain-computer interface technologies. Our approach captures the user's intentions from neural signals and decodes visemes in short time steps to produce dynamic visual outputs. The results demonstrate the potential to rapidly capture and reconstruct lip movements during natural speech attempts from human neural signals, enabling dynamic neural communication through the convergence of computer vision and brain--computer interface.
Abstract:Interpreting EEG signals linked to spoken language presents a complex challenge, given the data's intricate temporal and spatial attributes, as well as the various noise factors. Denoising diffusion probabilistic models (DDPMs), which have recently gained prominence in diverse areas for their capabilities in representation learning, are explored in our research as a means to address this issue. Using DDPMs in conjunction with a conditional autoencoder, our new approach considerably outperforms traditional machine learning algorithms and established baseline models in accuracy. Our results highlight the potential of DDPMs as a sophisticated computational method for the analysis of speech-related EEG signals. This could lead to significant advances in brain-computer interfaces tailored for spoken communication.