Abstract:A common way to extend the memory of large language models (LLMs) is by retrieval augmented generation (RAG), which inserts text retrieved from a larger memory into an LLM's context window. However, the context window is typically limited to several thousand tokens, which limits the number of retrieved passages that can inform a model's response. For this reason, it's important to avoid occupying context window space with redundant information by ensuring a degree of diversity among retrieved passages. At the same time, the information should also be relevant to the current task. Most prior methods that encourage diversity among retrieved results, such as Maximal Marginal Relevance (MMR), do so by incorporating an objective that explicitly trades off diversity and relevance. We propose a novel simple optimization metric based on relevant information gain, a probabilistic measure of the total information relevant to a query for a set of retrieved results. By optimizing this metric, diversity organically emerges from our system. When used as a drop-in replacement for the retrieval component of a RAG system, this method yields state-of-the-art performance on question answering tasks from the Retrieval Augmented Generation Benchmark (RGB), outperforming existing metrics that directly optimize for relevance and diversity.
Abstract:The use of question-based activities (QBAs) is wide-spread in education, traditionally forming an integral part of the learning and assessment process. In this paper, we design and evaluate an automated question generation tool for formative and summative assessment in schools. We present an expert survey of one hundred and four teachers, demonstrating the need for automated generation of QBAs, as a tool that can significantly reduce the workload of teachers and facilitate personalized learning experiences. Leveraging the recent advancements in generative AI, we then present a modular framework employing transformer based language models for automatic generation of multiple-choice questions (MCQs) from textual content. The presented solution, with distinct modules for question generation, correct answer prediction, and distractor formulation, enables us to evaluate different language models and generation techniques. Finally, we perform an extensive quantitative and qualitative evaluation, demonstrating trade-offs in the use of different techniques and models.