Abstract:We present efforts in the fields of machine learning and time series forecasting to accurately predict counts of future opioid overdose incidents recorded by Emergency Medical Services (EMS) in the state of Kentucky. Forecasts are useful to state government agencies to properly prepare and distribute resources related to opioid overdoses effectively. Our approach uses county and district level aggregations of EMS opioid overdose encounters and forecasts future counts for each month. A variety of additional covariates were tested to determine their impact on the model's performance. Models with different levels of complexity were evaluated to optimize training time and accuracy. Our results show that when special precautions are taken to address data sparsity, useful predictions can be generated with limited error by utilizing yearly trends and covariance with additional data sources.
Abstract:Opioid Use Disorder (OUD) is a public health crisis costing the US billions of dollars annually in healthcare, lost workplace productivity, and crime. Analyzing longitudinal healthcare data is critical in addressing many real-world problems in healthcare. Leveraging the real-world longitudinal healthcare data, we propose a novel multi-stream transformer model called MUPOD for OUD prediction. MUPOD is designed to simultaneously analyze multiple types of healthcare data streams, such as medications and diagnoses, by finding the attentions within and across these data streams. Our model tested on the data from 392,492 patients with long-term back pain problems showed significantly better performance than the traditional models and recently developed deep learning models.