University of Tours, France
Abstract:Automatic identification of mutiword expressions (MWEs) is a pre-requisite for semantically-oriented downstream applications. This task is challenging because MWEs, especially verbal ones (VMWEs), exhibit surface variability. However, this variability is usually more restricted than in regular (non-VMWE) constructions, which leads to various variability profiles. We use this fact to determine the optimal set of features which could be used in a supervised classification setting to solve a subproblem of VMWE identification: the identification of occurrences of previously seen VMWEs. Surprisingly, a simple custom frequency-based feature selection method proves more efficient than other standard methods such as Chi-squared test, information gain or decision trees. An SVM classifier using the optimal set of only 6 features outperforms the best systems from a recent shared task on the French seen data.
Abstract:Most current word prediction systems make use of n-gram language models (LM) to estimate the probability of the following word in a phrase. In the past years there have been many attempts to enrich such language models with further syntactic or semantic information. We want to explore the predictive powers of Latent Semantic Analysis (LSA), a method that has been shown to provide reliable information on long-distance semantic dependencies between words in a context. We present and evaluate here several methods that integrate LSA-based information with a standard language model: a semantic cache, partial reranking, and different forms of interpolation. We found that all methods show significant improvements, compared to the 4-gram baseline, and most of them to a simple cache model as well.