Abstract:Knowledge graphs are powerful tools for representing and organising complex biomedical data. Several knowledge graph embedding algorithms have been proposed to learn from and complete knowledge graphs. However, a recent study demonstrates the limited efficacy of these embedding algorithms when applied to biomedical knowledge graphs, raising the question of whether knowledge graph embeddings have limitations in biomedical settings. This study aims to apply state-of-the-art knowledge graph embedding models in the context of a recent biomedical knowledge graph, BioKG, and evaluate their performance and potential downstream uses. We achieve a three-fold improvement in terms of performance based on the HITS@10 score over previous work on the same biomedical knowledge graph. Additionally, we provide interpretable predictions through a rule-based method. We demonstrate that knowledge graph embedding models are applicable in practice by evaluating the best-performing model on four tasks that represent real-life polypharmacy situations. Results suggest that knowledge learnt from large biomedical knowledge graphs can be transferred to such downstream use cases. Our code is available at https://github.com/aryopg/biokge.
Abstract:The SARS-CoV-2 pandemic has emphasised the importance of developing a universal vaccine that can protect against current and future variants of the virus. The present study proposes a novel conditional protein Language Model architecture, called Vaxformer, which is designed to produce natural-looking antigenicity-controlled SARS-CoV-2 spike proteins. We evaluate the generated protein sequences of the Vaxformer model using DDGun protein stability measure, netMHCpan antigenicity score, and a structure fidelity score with AlphaFold to gauge its viability for vaccine development. Our results show that Vaxformer outperforms the existing state-of-the-art Conditional Variational Autoencoder model to generate antigenicity-controlled SARS-CoV-2 spike proteins. These findings suggest promising opportunities for conditional Transformer models to expand our understanding of vaccine design and their role in mitigating global health challenges. The code used in this study is available at https://github.com/aryopg/vaxformer .