Abstract:In this paper, we introduce iART: an open Web platform for art-historical research that facilitates the process of comparative vision. The system integrates various machine learning techniques for keyword- and content-based image retrieval as well as category formation via clustering. An intuitive GUI supports users to define queries and explore results. By using a state-of-the-art cross-modal deep learning approach, it is possible to search for concepts that were not previously detected by trained classification models. Art-historical objects from large, openly licensed collections such as Amsterdam Rijksmuseum and Wikidata are made available to users.
Abstract:In this paper, we advocate Tversky's ratio model as an appropriate basis for computational approaches to semantic similarity, that is, the comparison of objects such as images in a semantically meaningful way. We consider the problem of learning Tversky similarity measures from suitable training data indicating whether two objects tend to be similar or dissimilar. Experimentally, we evaluate our approach to similarity learning on two image datasets, showing that is performs very well compared to existing methods.