Abstract:Many historical people are captured only in old, faded, black and white photos, that have been distorted by the limitations of early cameras and the passage of time. This paper simulates traveling back in time with a modern camera to rephotograph famous subjects. Unlike conventional image restoration filters which apply independent operations like denoising, colorization, and superresolution, we leverage the StyleGAN2 framework to project old photos into the space of modern high-resolution photos, achieving all of these effects in a unified framework. A unique challenge with this approach is capturing the identity and pose of the photo's subject and not the many artifacts in low-quality antique photos. Our comparisons to current state-of-the-art restoration filters show significant improvements and compelling results for a variety of important historical people.
Abstract:Casual photography is often performed in uncontrolled lighting that can result in low quality images and degrade the performance of downstream processing. We consider the problem of estimating surface normal and reflectance maps of scenes depicting people despite these conditions by supplementing the available visible illumination with a single near infrared (NIR) light source and camera, a so-called "dark flash image". Our method takes as input a single color image captured under arbitrary visible lighting and a single dark flash image captured under controlled front-lit NIR lighting at the same viewpoint, and computes a normal map, a diffuse albedo map, and a specular intensity map of the scene. Since ground truth normal and reflectance maps of faces are difficult to capture, we propose a novel training technique that combines information from two readily available and complementary sources: a stereo depth signal and photometric shading cues. We evaluate our method over a range of subjects and lighting conditions and describe two applications: optimizing stereo geometry and filling the shadows in an image.
Abstract:This paper introduces the largest and most diverse collection of rectified stereo image pairs to the research community, KeystoneDepth, consisting of tens of thousands of stereographs of historical people, events, objects, and scenes between 1860 and 1963. Leveraging the Keystone-Mast raw scans from the California Museum of Photography, we apply multiple processing steps to produce clean stereo image pairs, complete with calibration data, rectification transforms, and depthmaps. A second contribution is a novel approach for view synthesis that runs at real-time rates on a mobile device, simulating the experience of looking through an open window into these historical scenes. We produce results for thousands of antique stereographs, capturing many important historical moments.