Abstract:Modern neuroprostheses can now restore communication in patients who have lost the ability to speak or move. However, these invasive devices entail risks inherent to neurosurgery. Here, we introduce a non-invasive method to decode the production of sentences from brain activity and demonstrate its efficacy in a cohort of 35 healthy volunteers. For this, we present Brain2Qwerty, a new deep learning architecture trained to decode sentences from either electro- (EEG) or magneto-encephalography (MEG), while participants typed briefly memorized sentences on a QWERTY keyboard. With MEG, Brain2Qwerty reaches, on average, a character-error-rate (CER) of 32% and substantially outperforms EEG (CER: 67%). For the best participants, the model achieves a CER of 19%, and can perfectly decode a variety of sentences outside of the training set. While error analyses suggest that decoding depends on motor processes, the analysis of typographical errors suggests that it also involves higher-level cognitive factors. Overall, these results narrow the gap between invasive and non-invasive methods and thus open the path for developing safe brain-computer interfaces for non-communicating patients.
Abstract:LLMs have transformed the execution of numerous tasks, including those in the medical domain. Among these, summarizing patient-reported outcomes (PROs) into concise natural language reports is of particular interest to clinicians, as it enables them to focus on critical patient concerns and spend more time in meaningful discussions. While existing work with LLMs like GPT-4 has shown impressive results, real breakthroughs could arise from leveraging SLMs as they offer the advantage of being deployable locally, ensuring patient data privacy and compliance with healthcare regulations. This study benchmarks several SLMs against LLMs for summarizing patient-reported Q\&A forms in the context of radiotherapy. Using various metrics, we evaluate their precision and reliability. The findings highlight both the promise and limitations of SLMs for high-stakes medical tasks, fostering more efficient and privacy-preserving AI-driven healthcare solutions.