Abstract:Over the past decade, studying animal behaviour with the help of computer vision has become more popular. Replacing human observers by computer vision lowers the cost of data collection and therefore allows to collect more extensive datasets. However, the majority of available computer vision algorithms to study animal behaviour is highly tailored towards a single research objective, limiting possibilities for data reuse. In this perspective, pose-estimation in combination with animal tracking offers opportunities to yield a higher level representation capturing both the spatial and temporal component of animal behaviour. Such a higher level representation allows to answer a wide variety of research questions simultaneously, without the need to develop repeatedly tailored computer vision algorithms. In this paper, we therefore first cope with several weaknesses of current pose-estimation algorithms and thereafter introduce KeySORT (Keypoint Simple and Online Realtime Tracking). KeySORT deploys an adaptive Kalman filter to construct tracklets in a bounding-box free manner, significantly improving the temporal consistency of detected keypoints. In this paper, we focus on pose estimation in cattle, but our methodology can easily be generalised to any other animal species. Our test results indicate our algorithm is able to detect up to 80% of the ground truth keypoints with high accuracy, with only a limited drop in performance when daylight recordings are compared to nightvision recordings. Moreover, by using KeySORT to construct skeletons, the temporal consistency of generated keypoint coordinates was largely improved, offering opportunities with regard to automated behaviour monitoring of animals.
Abstract:In recent years, we have seen many advancements in wood species identification. Methods like DNA analysis, Near Infrared (NIR) spectroscopy, and Direct Analysis in Real Time (DART) mass spectrometry complement the long-established wood anatomical assessment of cell and tissue morphology. However, most of these methods have some limitations such as high costs, the need for skilled experts for data interpretation, and the lack of good datasets for professional reference. Therefore, most of these methods, and certainly the wood anatomical assessment, may benefit from tools based on Artificial Intelligence. In this paper, we apply two transfer learning techniques with Convolutional Neural Networks (CNNs) to a multi-view Congolese wood species dataset including sections from different orientations and viewed at different microscopic magnifications. We explore two feature extraction methods in detail, namely Global Average Pooling (GAP) and Random Encoding of Aggregated Deep Activation Maps (RADAM), for efficient and accurate wood species identification. Our results indicate superior accuracy on diverse datasets and anatomical sections, surpassing the results of other methods. Our proposal represents a significant advancement in wood species identification, offering a robust tool to support the conservation of forest ecosystems and promote sustainable forestry practices.