Abstract:Cohort studies are of significant importance in the field of healthcare analysis. However, existing methods typically involve manual, labor-intensive, and expert-driven pattern definitions or rely on simplistic clustering techniques that lack medical relevance. Automating cohort studies with interpretable patterns has great potential to facilitate healthcare analysis but remains an unmet need in prior research efforts. In this paper, we propose a cohort auto-discovery model, CohortNet, for interpretable healthcare analysis, focusing on the effective identification, representation, and exploitation of cohorts characterized by medically meaningful patterns. CohortNet initially learns fine-grained patient representations by separately processing each feature, considering both individual feature trends and feature interactions at each time step. Subsequently, it classifies each feature into distinct states and employs a heuristic cohort exploration strategy to effectively discover substantial cohorts with concrete patterns. For each identified cohort, it learns comprehensive cohort representations with credible evidence through associated patient retrieval. Ultimately, given a new patient, CohortNet can leverage relevant cohorts with distinguished importance, which can provide a more holistic understanding of the patient's conditions. Extensive experiments on three real-world datasets demonstrate that it consistently outperforms state-of-the-art approaches and offers interpretable insights from diverse perspectives in a top-down fashion.
Abstract:Localized food datasets have profound meaning in revealing a country's special cuisines to explore people's dietary behaviors, which will shed light on their health conditions and disease development. In this paper, revolving around the demand for accurate food recognition in Singapore, we develop the FoodSG platform to incubate diverse healthcare-oriented applications as a service in Singapore, taking into account their shared requirements. We release a localized Singaporean food dataset FoodSG-233 with a systematic cleaning and curation pipeline for promoting future data management research in food computing. To overcome the hurdle in recognition performance brought by Singaporean multifarious food dishes, we propose to integrate supervised contrastive learning into our food recognition model FoodSG-SCL for the intrinsic capability to mine hard positive/negative samples and therefore boost the accuracy. Through a comprehensive evaluation, we share the insightful experience with practitioners in the data management community regarding food-related data-intensive healthcare applications. The FoodSG-233 dataset can be accessed via: https://foodlg.comp.nus.edu.sg/.