Abstract:We present KODIS, a dyadic dispute resolution corpus containing thousands of dialogues from over 75 countries. Motivated by a theoretical model of culture and conflict, participants engage in a typical customer service dispute designed by experts to evoke strong emotions and conflict. The corpus contains a rich set of dispositional, process, and outcome measures. The initial analysis supports theories of how anger expressions lead to escalatory spirals and highlights cultural differences in emotional expression. We make this corpus and data collection framework available to the community.
Abstract:We propose to take on the problem ofWord Sense Disambiguation (WSD). In language, words of the same form can take different meanings depending on context. While humans easily infer the meaning or gloss of such words by their context, machines stumble on this task.As such, we intend to replicated and expand upon the results of Huang et al.GlossBERT, a model which they design to disambiguate these words (Huang et al.,2019). Specifically, we propose the following augmentations: data-set tweaking(alpha hyper-parameter), ensemble methods, and replacement of BERT with BART andALBERT. The following GitHub repository contains all code used in this report, which extends on the code made available by Huang et al.