Abstract:Super-resolution (SR) is a key technique for improving the visual quality of video content by increasing its spatial resolution while reconstructing fine details. SR has been employed in many applications including video streaming, where compressed low-resolution content is typically transmitted to end users and then reconstructed with a higher resolution and enhanced quality. To support real-time playback, it is important to implement fast SR models while preserving reconstruction quality; however most existing solutions, in particular those based on complex deep neural networks, fail to do so. To address this issue, this paper proposes a low-complexity SR method, RTSR, designed to enhance the visual quality of compressed video content, focusing on resolution up-scaling from a) 360p to 1080p and from b) 540p to 4K. The proposed approach utilizes a CNN-based network architecture, which was optimized for AV1 (SVT)-encoded content at various quantization levels based on a dual-teacher knowledge distillation method. This method was submitted to the AIM 2024 Video Super-Resolution Challenge, specifically targeting the Efficient/Mobile Real-Time Video Super-Resolution competition. It achieved the best trade-off between complexity and coding performance (measured in PSNR, SSIM and VMAF) among all six submissions. The code will be available soon.
Abstract:Deep learning is now playing an important role in enhancing the performance of conventional hybrid video codecs. These learning-based methods typically require diverse and representative training material for optimization in order to achieve model generalization and optimal coding performance. However, existing datasets either offer limited content variability or come with restricted licensing terms constraining their use to research purposes only. To address these issues, we propose a new training dataset, named BVI-AOM, which contains 956 uncompressed sequences at various resolutions from 270p to 2160p, covering a wide range of content and texture types. The dataset comes with more flexible licensing terms and offers competitive performance when used as a training set for optimizing deep video coding tools. The experimental results demonstrate that when used as a training set to optimize two popular network architectures for two different coding tools, the proposed dataset leads to additional bitrate savings of up to 0.29 and 2.98 percentage points in terms of PSNR-Y and VMAF, respectively, compared to an existing training dataset, BVI-DVC, which has been widely used for deep video coding. The BVI-AOM dataset is available for download under this link: (TBD).