Abstract:This research explores the application of Deep Reinforcement Learning (DRL) to optimize the design of a nuclear fusion reactor. DRL can efficiently address the challenging issues attributed to multiple physics and engineering constraints for steady-state operation. The fusion reactor design computation and the optimization code applicable to parallelization with DRL are developed. The proposed framework enables finding the optimal reactor design that satisfies the operational requirements while reducing building costs. Multi-objective design optimization for a fusion reactor is now simplified by DRL, indicating the high potential of the proposed framework for advancing the efficient and sustainable design of future reactors.
Abstract:This paper introduces a groundbreaking multi-modal neural network model designed for resolution enhancement, which innovatively leverages inter-diagnostic correlations within a system. Traditional approaches have primarily focused on uni-modal enhancement strategies, such as pixel-based image enhancement or heuristic signal interpolation. In contrast, our model employs a novel methodology by harnessing the diagnostic relationships within the physics of fusion plasma. Initially, we establish the correlation among diagnostics within the tokamak. Subsequently, we utilize these correlations to substantially enhance the temporal resolution of the Thomson Scattering diagnostic, which assesses plasma density and temperature. By increasing its resolution from conventional 200Hz to 500kHz, we facilitate a new level of insight into plasma behavior, previously attainable only through computationally intensive simulations. This enhancement goes beyond simple interpolation, offering novel perspectives on the underlying physical phenomena governing plasma dynamics.