Abstract:Accurate occupancy information helps to improve building energy efficiency and occupant comfort. Occupancy detection methods based on CO2 sensors have received attention due to their low cost and low intrusiveness. In naturally ventilated buildings, the accuracy of CO2-based occupancy detection is generally low in related studies due to the complex ventilation behavior and the difficulty in measuring the actual air exchange through windows. In this study, we present two novel features for occupancy detection based on the spatial distribution of the CO2 concentration. After a quantitative analysis with Support Vector Machine (SVM) as classifier, it was found that the accuracy of occupancy state detection in naturally ventilated rooms could be improved by up to 14.8 percentage points compared to the baseline, reaching 83.2 % (F1 score 0.84) without any ventilation information. With ventilation information, the accuracy reached 87.6 % (F1 score 0.89). The performance of occupancy quantity detection was significantly improved by up to 25.3 percentage points versus baseline, reaching 56 %, with root mean square error (RMSE) of 11.44 occupants, using only CO2-related features. Additional ventilation information further enhanced the performance to 61.8 % (RMSE 9.02 occupants). By incorporating spatial features, the model using only CO2-related features revealed similar performance as the model containing additional ventilation information, resulting in a better low-cost occupancy detection method for naturally ventilated buildings.
Abstract:Missing data are frequently observed by practitioners and researchers in the building energy modeling community. In this regard, advanced data-driven solutions, such as Deep Learning methods, are typically required to reflect the non-linear behavior of these anomalies. As an ongoing research question related to Deep Learning, a model's applicability to limited data settings can be explored by introducing prior knowledge in the network. This same strategy can also lead to more interpretable predictions, hence facilitating the field application of the approach. For that purpose, the aim of this paper is to propose the use of Physics-informed Denoising Autoencoders (PI-DAE) for missing data imputation in commercial buildings. In particular, the presented method enforces physics-inspired soft constraints to the loss function of a Denoising Autoencoder (DAE). In order to quantify the benefits of the physical component, an ablation study between different DAE configurations is conducted. First, three univariate DAEs are optimized separately on indoor air temperature, heating, and cooling data. Then, two multivariate DAEs are derived from the previous configurations. Eventually, a building thermal balance equation is coupled to the last multivariate configuration to obtain PI-DAE. Additionally, two commonly used benchmarks are employed to support the findings. It is shown how introducing physical knowledge in a multivariate Denoising Autoencoder can enhance the inherent model interpretability through the optimized physics-based coefficients. While no significant improvement is observed in terms of reconstruction error with the proposed PI-DAE, its enhanced robustness to varying rates of missing data and the valuable insights derived from the physics-based coefficients create opportunities for wider applications within building systems and the built environment.
Abstract:Enhancing interoperability and information exchange between domain-specific software products for BIM is an important aspect in the Architecture, Engineering, Construction and Operations industry. Recent research started investigating methods from the areas of machine and deep learning for semantic enrichment of BIM models. However, training and evaluation of these machine learning algorithms requires sufficiently large and comprehensive datasets. This work presents IFCNet, a dataset of single-entity IFC files spanning a broad range of IFC classes containing both geometric and semantic information. Using only the geometric information of objects, the experiments show that three different deep learning models are able to achieve good classification performance.
Abstract:As the number of installed meters in buildings increases, there is a growing number of data time-series that could be used to develop data-driven models to support and optimize building operation. However, building data sets are often characterized by errors and missing values, which are considered, by the recent research, among the main limiting factors on the performance of the proposed models. Motivated by the need to address the problem of missing data in building operation, this work presents a data-driven approach to fill these gaps. In this study, three different autoencoder neural networks are trained to reconstruct missing indoor environment data time-series in a data set collected in an office building in Aachen, Germany. The models are applicable for different time-series obtained from room automation, such as indoor air temperature, relative humidity and $CO_{2}$ data streams. The results prove that the proposed methods outperform classic numerical approaches and they result in reconstructing the corresponding variables with average RMSEs of 0.42 {\deg}C, 1.30 % and 78.41 ppm, respectively.
Abstract:Occupant behavior (OB) and in particular window openings need to be considered in building performance simulation (BPS), in order to realistically model the indoor climate and energy consumption for heating ventilation and air conditioning (HVAC). However, the proposed OB window opening models are often biased towards the over-represented class where windows remained closed. In addition, they require tuning for each occupant which can not be efficiently scaled to the increased number of occupants. This paper presents a window opening model for commercial buildings using deep learning methods. The model is trained using data from occupants from an office building in Germany. In total the model is evaluated using almost 20 mio. data points from 3 independent buildings, located in Aachen, Frankfurt and Philadelphia. Eventually, the results of 3100 core hours of model development are summarized, which makes this study the largest of its kind in window states modeling. Additionally, the practical potential of the proposed model was tested by incorporating it in the Modelica-based thermal building simulation. The resulting evaluation accuracy and F1 scores on the office buildings ranged between 86-89 % and 0.53-0.65 respectively. The performance dropped around 15 % points in case of sparse input data, while the F1 score remained high.
Abstract:This paper addresses the question of identifying the time-window in short-term past from which the information regarding the future occupant's window opening actions and resulting window states in buildings can be predicted. The addressed sequence duration was in the range between 30 and 240 time-steps of indoor climate data, where the applied temporal discretization was one minute. For that purpose, a deep neural network is trained to predict the window states, where the input sequence duration is handled as an additional hyperparameter. Eventually, the relationship between the prediction accuracy and the time-lag of the predicted window state in future is analyzed. The results pointed out, that the optimal predictive performance was achieved for the case where 60 time-steps of the indoor climate data were used as input. Additionally, the results showed that very long sequences (120-240 time-steps) could be addressed efficiently, given the right hyperprameters. Hence, the use of the memory over previous hours of high-resolution indoor climate data did not improve the predictive performance, when compared to the case where 30/60 minutes indoor sequences were used. The analysis of the prediction accuracy in the form of F1 score for the different time-lag of future window states dropped from 0.51 to 0.27, when shifting the prediction target from 10 to 60 minutes in future.