Abstract:Passenger counting is crucial for public transport vehicle scheduling and traffic capacity evaluation. However, most existing methods are either costly or with low counting accuracy, leading to the recent use of Wi-Fi signals for this purpose. In this paper, we develop an efficient edge computing-based passenger counting system consists of multiple Wi-Fi receivers and an edge server. It leverages channel state information (CSI) and received signal strength indicator (RSSI) to facilitate the collaboration among multiple receivers. Specifically, we design a novel CSI feature fusion module called Adaptive RSSI-weighted CSI Feature Concatenation, which integrates locally extracted CSI and RSSI features from multiple receivers for information fusion at the edge server. Performance of our proposed system is evaluated using a real-world dataset collected from a double-decker bus in Hong Kong, with up to 20 passengers. The experimental results reveal that our system achieves an average accuracy and F1-score of over 94%, surpassing other cooperative sensing baselines by at least 2.27% in accuracy and 2.34% in F1-score.
Abstract:With the growing demand of real-time traffic monitoring nowadays, software-based image processing can hardly meet the real-time data processing requirement due to the serial data processing nature. In this paper, the implementation of a hardware-based feature detection and networking system prototype for real-time traffic monitoring as well as data transmission is presented. The hardware architecture of the proposed system is mainly composed of three parts: data collection, feature detection, and data transmission. Overall, the presented prototype can tolerate a high data rate of about 60 frames per second. By integrating the feature detection and data transmission functions, the presented system can be further developed for various VANET application scenarios to improve road safety and traffic efficiency. For example, detection of vehicles that violate traffic rules, parking enforcement, etc.