Abstract:Industry~4.0 (I4.0) standards and standardization frameworks have been proposed with the goal of \emph{empowering interoperability} in smart factories. These standards enable the description and interaction of the main components, systems, and processes inside of a smart factory. Due to the growing number of frameworks and standards, there is an increasing need for approaches that automatically analyze the landscape of I4.0 standards. Standardization frameworks classify standards according to their functions into layers and dimensions. However, similar standards can be classified differently across the frameworks, producing, thus, interoperability conflicts among them. Semantic-based approaches that rely on ontologies and knowledge graphs, have been proposed to represent standards, known relations among them, as well as their classification according to existing frameworks. Albeit informative, the structured modeling of the I4.0 landscape only provides the foundations for detecting interoperability issues. Thus, graph-based analytical methods able to exploit knowledge encoded by these approaches, are required to uncover alignments among standards. We study the relatedness among standards and frameworks based on community analysis to discover knowledge that helps to cope with interoperability conflicts between standards. We use knowledge graph embeddings to automatically create these communities exploiting the meaning of the existing relationships. In particular, we focus on the identification of similar standards, i.e., communities of standards, and analyze their properties to detect unknown relations. We empirically evaluate our approach on a knowledge graph of I4.0 standards using the Trans$^*$ family of embedding models for knowledge graph entities. Our results are promising and suggest that relations among standards can be detected accurately.
Abstract:Collaborative vocabulary development in the context of data integration is the process of finding consensus between the experts of the different systems and domains. The complexity of this process is increased with the number of involved people, the variety of the systems to be integrated and the dynamics of their domain. In this paper we advocate that the realization of a powerful version control system is the heart of the problem. Driven by this idea and the success of Git in the context of software development, we investigate the applicability of Git for collaborative vocabulary development. Even though vocabulary development and software development have much more similarities than differences there are still important differences. These need to be considered within the development of a successful versioning and collaboration system for vocabulary development. Therefore, this paper starts by presenting the challenges we were faced with during the creation of vocabularies collaboratively and discusses its distinction to software development. Based on these insights we propose Git4Voc which comprises guidelines how Git can be adopted to vocabulary development. Finally, we demonstrate how Git hooks can be implemented to go beyond the plain functionality of Git by realizing vocabulary-specific features like syntactic validation and semantic diffs.