Abstract:Compositional Zero-Shot Learning (CZSL) aims to identify unseen state-object compositions by leveraging knowledge learned from seen compositions. Existing approaches often independently predict states and objects, overlooking their relationships. In this paper, we propose a novel framework, learning primitive relations (LPR), designed to probabilistically capture the relationships between states and objects. By employing the cross-attention mechanism, LPR considers the dependencies between states and objects, enabling the model to infer the likelihood of unseen compositions. Experimental results demonstrate that LPR outperforms state-of-the-art methods on all three CZSL benchmark datasets in both closed-world and open-world settings. Through qualitative analysis, we show that LPR leverages state-object relationships for unseen composition prediction.
Abstract:Unsupervised semantic segmentation (USS) aims to discover and recognize meaningful categories without any labels. For a successful USS, two key abilities are required: 1) information compression and 2) clustering capability. Previous methods have relied on feature dimension reduction for information compression, however, this approach may hinder the process of clustering. In this paper, we propose a novel USS framework called Expand-and-Quantize Unsupervised Semantic Segmentation (EQUSS), which combines the benefits of high-dimensional spaces for better clustering and product quantization for effective information compression. Our extensive experiments demonstrate that EQUSS achieves state-of-the-art results on three standard benchmarks. In addition, we analyze the entropy of USS features, which is the first step towards understanding USS from the perspective of information theory.