Abstract:While representation learning and generative modeling seek to understand visual data, unifying both domains remains unexplored. Recent Unified Self-Supervised Learning (SSL) methods have started to bridge the gap between both paradigms. However, they rely solely on semantic token reconstruction, which requires an external tokenizer during training -- introducing a significant overhead. In this work, we introduce Sorcen, a novel unified SSL framework, incorporating a synergic Contrastive-Reconstruction objective. Our Contrastive objective, "Echo Contrast", leverages the generative capabilities of Sorcen, eliminating the need for additional image crops or augmentations during training. Sorcen "generates" an echo sample in the semantic token space, forming the contrastive positive pair. Sorcen operates exclusively on precomputed tokens, eliminating the need for an online token transformation during training, thereby significantly reducing computational overhead. Extensive experiments on ImageNet-1k demonstrate that Sorcen outperforms the previous Unified SSL SoTA by 0.4%, 1.48 FID, 1.76%, and 1.53% on linear probing, unconditional image generation, few-shot learning, and transfer learning, respectively, while being 60.8% more efficient. Additionally, Sorcen surpasses previous single-crop MIM SoTA in linear probing and achieves SoTA performance in unconditional image generation, highlighting significant improvements and breakthroughs in Unified SSL models.
Abstract:Nearest neighbour based methods have proved to be one of the most successful self-supervised learning (SSL) approaches due to their high generalization capabilities. However, their computational efficiency decreases when more than one neighbour is used. In this paper, we propose a novel contrastive SSL approach, which we call All4One, that reduces the distance between neighbour representations using ''centroids'' created through a self-attention mechanism. We use a Centroid Contrasting objective along with single Neighbour Contrasting and Feature Contrasting objectives. Centroids help in learning contextual information from multiple neighbours whereas the neighbour contrast enables learning representations directly from the neighbours and the feature contrast allows learning representations unique to the features. This combination enables All4One to outperform popular instance discrimination approaches by more than 1% on linear classification evaluation for popular benchmark datasets and obtains state-of-the-art (SoTA) results. Finally, we show that All4One is robust towards embedding dimensionalities and augmentations, surpassing NNCLR and Barlow Twins by more than 5% on low dimensionality and weak augmentation settings. The source code would be made available soon.