Abstract:We describe an application of machine learning to the problem of predicting preterm birth. We conduct a secondary analysis on a clinical trial dataset collected by the National In- stitute of Child Health and Human Development (NICHD) while focusing our attention on predicting different classes of preterm birth. We compare three approaches for deriving predictive models: a support vector machine (SVM) approach with linear and non-linear kernels, logistic regression with different model selection along with a model based on decision rules prescribed by physician experts for prediction of preterm birth. Our approach highlights the pre-processing methods applied to handle the inherent dynamics, noise and gaps in the data and describe techniques used to handle skewed class distributions. Empirical experiments demonstrate significant improvement in predicting preterm birth compared to past work.
Abstract:We present a new online boosting algorithm for adapting the weights of a boosted classifier, which yields a closer approximation to Freund and Schapire's AdaBoost algorithm than previous online boosting algorithms. We also contribute a new way of deriving the online algorithm that ties together previous online boosting work. We assume that the weak hypotheses were selected beforehand, and only their weights are updated during online boosting. The update rule is derived by minimizing AdaBoost's loss when viewed in an incremental form. The equations show that optimization is computationally expensive. However, a fast online approximation is possible. We compare approximation error to batch AdaBoost on synthetic datasets and generalization error on face datasets and the MNIST dataset.