Abstract:Generative Artificial Intelligence (GenAI) models such as LLMs, GPTs, and Diffusion Models have recently gained widespread attention from both the research and the industrial communities. This survey explores their application in network monitoring and management, focusing on prominent use cases, as well as challenges and opportunities. We discuss how network traffic generation and classification, network intrusion detection, networked system log analysis, and network digital assistance can benefit from the use of GenAI models. Additionally, we provide an overview of the available GenAI models, datasets for large-scale training phases, and platforms for the development of such models. Finally, we discuss research directions that potentially mitigate the roadblocks to the adoption of GenAI for network monitoring and management. Our investigation aims to map the current landscape and pave the way for future research in leveraging GenAI for network monitoring and management.
Abstract:The popularity of Deep Learning (DL), coupled with network traffic visibility reduction due to the increased adoption of HTTPS, QUIC and DNS-SEC, re-ignited interest towards Traffic Classification (TC). However, to tame the dependency from task-specific large labeled datasets we need to find better ways to learn representations that are valid across tasks. In this work we investigate this problem comparing transfer learning, meta-learning and contrastive learning against reference Machine Learning (ML) tree-based and monolithic DL models (16 methods total). Using two publicly available datasets, namely MIRAGE19 (40 classes) and AppClassNet (500 classes), we show that (i) using large datasets we can obtain more general representations, (ii) contrastive learning is the best methodology and (iii) meta-learning the worst one, and (iv) while ML tree-based cannot handle large tasks but fits well small tasks, by means of reusing learned representations, DL methods are reaching tree-based models performance also for small tasks.