Abstract:Point cloud is often regarded as a discrete sampling of Riemannian manifold and plays a pivotal role in the 3D image interpretation. Particularly, rotation perturbation, an unexpected small change in rotation caused by various factors (like equipment offset, system instability, measurement errors and so on), can easily lead to the inferior results in point cloud learning tasks. However, classical point cloud learning methods are sensitive to rotation perturbation, and the existing networks with rotation robustness also have much room for improvements in terms of performance and noise tolerance. Given these, this paper remodels the point cloud from the perspective of manifold as well as designs a manifold distillation method to achieve the robustness of rotation perturbation without any coordinate transformation. In brief, during the training phase, we introduce a teacher network to learn the rotation robustness information and transfer this information to the student network through online distillation. In the inference phase, the student network directly utilizes the original 3D coordinate information to achieve the robustness of rotation perturbation. Experiments carried out on four different datasets verify the effectiveness of our method. Averagely, on the Modelnet40 and ScanobjectNN classification datasets with random rotation perturbations, our classification accuracy has respectively improved by 4.92% and 4.41%, compared to popular rotation-robust networks; on the ShapeNet and S3DIS segmentation datasets, compared to the rotation-robust networks, the improvements of mIoU are 7.36% and 4.82%, respectively. Besides, from the experimental results, the proposed algorithm also shows excellent performance in resisting noise and outliers.
Abstract:Semantic segmentation is an important branch of image processing and computer vision. With the popularity of deep learning, various deep semantic segmentation networks have been proposed for pixel-level classification and segmentation tasks. However, the imaging angles are often arbitrary in real world, such as water body images in remote sensing, and capillary and polyp images in medical field, and we usually cannot obtain prior orientation information to guide these networks to extract more effective features. Additionally, learning the features of objects with multiple orientation information is also challenging, as most CNN-based semantic segmentation networks do not have rotation equivariance to resist the disturbance from orientation information. To address the same, in this paper, we first establish a universal convolution-group framework to more fully utilize the orientation information and make the networks rotation equivariant. Then, we mathematically construct the padding-based rotation equivariant convolution mode (PreCM), which can be used not only for multi-scale images and convolution kernels, but also as a replacement component to replace multiple convolutions, like dilated convolution, transposed convolution, variable stride convolution, etc. In order to verify the realization of rotation equivariance, a new evaluation metric named rotation difference (RD) is finally proposed. The experiments carried out on the datesets Satellite Images of Water Bodies, DRIVE and Floodnet show that the PreCM-based networks can achieve better segmentation performance than the original and data augmentation-based networks. In terms of the average RD value, the former is 0% and the latter two are respectively 7.0503% and 3.2606%. Last but not least, PreCM also effectively enhances the robustness of networks to rotation perturbations.
Abstract:Deep neural networks (DNNs) are known to be vulnerable to adversarial examples, which are usually designed artificially to fool DNNs, but rarely exist in real-world scenarios. In this paper, we study the adversarial examples caused by raindrops, to demonstrate that there exist plenty of natural phenomena being able to work as adversarial attackers to DNNs. Moreover, we present a new approach to generate adversarial raindrops, denoted as AdvRD, using the generative adversarial network (GAN) technique to simulate natural raindrops. The images crafted by our AdvRD look very similar to the real-world raindrop images, statistically close to the distribution of true raindrop images, and more importantly, can perform strong adversarial attack to the state-of-the-art DNN models. On the other side, we show that the adversarial training using our AdvRD images can significantly improve the robustness of DNNs to the real-world raindrop attacks. Extensive experiments are carried out to demonstrate that the images crafted by AdvRD are visually and statistically close to the natural raindrop images, can work as strong attackers to DNN models, and also help improve the robustness of DNNs to raindrop attacks.