Abstract:Super-Resolution (SR) has gained increasing research attention over the past few years. With the development of Deep Neural Networks (DNNs), many super-resolution methods based on DNNs have been proposed. Although most of these methods are aimed at ordinary frames, there are few works on super-resolution of omnidirectional frames. In these works, omnidirectional frames are projected from the 3D sphere to a 2D plane by Equi-Rectangular Projection (ERP). Although ERP has been widely used for projection, it has severe projection distortion near poles. Current DNN-based SR methods use 2D convolution modules, which is more suitable for the regular grid. In this paper, we find that different projection methods have great impact on the performance of DNNs. To study this problem, a comprehensive comparison of projections in omnidirectional super-resolution is conducted. We compare the SR results of different projection methods. Experimental results show that Equi-Angular cube map projection (EAC), which has minimal distortion, achieves the best result in terms of WS-PSNR compared with other projections. Code and data will be released.