Abstract:We introduce Knowledgeable Network of Thoughts (kNoT): a prompt scheme that advances the capabilities of large language models (LLMs) beyond existing paradigms like Chain-of-Thought (CoT), Tree of Thoughts (ToT), and Graph of Thoughts (GoT). The key innovation of kNoT is the LLM Workflow Template (LWT), which allows for an executable plan to be specified by LLMs for LLMs. LWT allows these plans to be arbitrary networks, where single-step LLM operations are nodes, and edges correspond to message passing between these steps. Furthermore, LWT supports selection of individual elements through indexing, facilitating kNoT to produce intricate plans where each LLM operation can be limited to elementary operations, greatly enhancing reliability over extended task sequences. We demonstrate that kNoT significantly outperforms the state of the art on six use cases, while reducing the need for extensive prompt engineering. For instance, kNoT finds 92% accuracy for sorting 32 numbers over 12% and 31% for ToT and GoT, while utilizing up to 84.4% and 87.3% less task-specific prompts, respectively.
Abstract:Convolutional Neural Networks (CNNs) have dominated the majority of computer vision tasks. However, CNNs' vulnerability to adversarial attacks has raised concerns about deploying these models to safety-critical applications. In contrast, the Human Visual System (HVS), which utilizes spatial frequency channels to process visual signals, is immune to adversarial attacks. As such, this paper presents an empirical study exploring the vulnerability of CNN models in the frequency domain. Specifically, we utilize the discrete cosine transform (DCT) to construct the Spatial-Frequency (SF) layer to produce a block-wise frequency spectrum of an input image and formulate Spatial Frequency CNNs (SF-CNNs) by replacing the initial feature extraction layers of widely-used CNN backbones with the SF layer. Through extensive experiments, we observe that SF-CNN models are more robust than their CNN counterparts under both white-box and black-box attacks. To further explain the robustness of SF-CNNs, we compare the SF layer with a trainable convolutional layer with identical kernel sizes using two mixing strategies to show that the lower frequency components contribute the most to the adversarial robustness of SF-CNNs. We believe our observations can guide the future design of robust CNN models.
Abstract:As deep generative models advance, we anticipate deepfakes achieving "perfection"-generating no discernible artifacts or noise. However, current deepfake detectors, intentionally or inadvertently, rely on such artifacts for detection, as they are exclusive to deepfakes and absent in genuine examples. To bridge this gap, we introduce the Rebalanced Deepfake Detection Protocol (RDDP) to stress-test detectors under balanced scenarios where genuine and forged examples bear similar artifacts. We offer two RDDP variants: RDDP-WHITEHAT uses white-hat deepfake algorithms to create 'self-deepfakes,' genuine portrait videos with the resemblance of the underlying identity, yet carry similar artifacts to deepfake videos; RDDP-SURROGATE employs surrogate functions (e.g., Gaussian noise) to process both genuine and forged examples, introducing equivalent noise, thereby sidestepping the need of deepfake algorithms. Towards detecting perfect deepfake videos that aligns with genuine ones, we present ID-Miner, a detector that identifies the puppeteer behind the disguise by focusing on motion over artifacts or appearances. As an identity-based detector, it authenticates videos by comparing them with reference footage. Equipped with the artifact-agnostic loss at frame-level and the identity-anchored loss at video-level, ID-Miner effectively singles out identity signals amidst distracting variations. Extensive experiments comparing ID-Miner with 12 baseline detectors under both conventional and RDDP evaluations with two deepfake datasets, along with additional qualitative studies, affirm the superiority of our method and the necessity for detectors designed to counter perfect deepfakes.
Abstract:Support-query shift few-shot learning aims to classify unseen examples (query set) to labeled data (support set) based on the learned embedding in a low-dimensional space under a distribution shift between the support set and the query set. However, in real-world scenarios the shifts are usually unknown and varied, making it difficult to estimate in advance. Therefore, in this paper, we propose a novel but more difficult challenge, RSQS, focusing on Realistic Support-Query Shift few-shot learning. The key feature of RSQS is that the individual samples in a meta-task are subjected to multiple distribution shifts in each meta-task. In addition, we propose a unified adversarial feature alignment method called DUal adversarial ALignment framework (DuaL) to relieve RSQS from two aspects, i.e., inter-domain bias and intra-domain variance. On the one hand, for the inter-domain bias, we corrupt the original data in advance and use the synthesized perturbed inputs to train the repairer network by minimizing distance in the feature level. On the other hand, for intra-domain variance, we proposed a generator network to synthesize hard, i.e., less similar, examples from the support set in a self-supervised manner and introduce regularized optimal transportation to derive a smooth optimal transportation plan. Lastly, a benchmark of RSQS is built with several state-of-the-art baselines among three datasets (CIFAR100, mini-ImageNet, and Tiered-Imagenet). Experiment results show that DuaL significantly outperforms the state-of-the-art methods in our benchmark.
Abstract:Few-shot learning methods aim to embed the data to a low-dimensional embedding space and then classify the unseen query data to the seen support set. While these works assume that the support set and the query set lie in the same embedding space, a distribution shift usually occurs between the support set and the query set, i.e., the Support-Query Shift, in the real world. Though optimal transportation has shown convincing results in aligning different distributions, we find that the small perturbations in the images would significantly misguide the optimal transportation and thus degrade the model performance. To relieve the misalignment, we first propose a novel adversarial data augmentation method, namely Perturbation-Guided Adversarial Alignment (PGADA), which generates the hard examples in a self-supervised manner. In addition, we introduce Regularized Optimal Transportation to derive a smooth optimal transportation plan. Extensive experiments on three benchmark datasets manifest that our framework significantly outperforms the eleven state-of-the-art methods on three datasets.
Abstract:With the successful creation of high-quality image-to-image (Img2Img) translation GANs comes the non-ethical applications of DeepFake and DeepNude. Such misuses of img2img techniques present a challenging problem for society. In this work, we tackle the problem by introducing the Limit-Aware Self-Guiding Gradient Sliding Attack (LaS-GSA). LaS-GSA follows the Nullifying Attack to cancel the img2img translation process under a black-box setting. In other words, by processing input images with the proposed LaS-GSA before publishing, any targeted img2img GANs can be nullified, preventing the model from maliciously manipulating the images. To improve efficiency, we introduce the limit-aware random gradient-free estimation and the gradient sliding mechanism to estimate the gradient that adheres to the adversarial limit, i.e., the pixel value limitations of the adversarial example. Theoretical justifications validate how the above techniques prevent inefficiency caused by the adversarial limit in both the direction and the step length. Furthermore, an effective self-guiding prior is extracted solely from the threat model and the target image to efficiently leverage the prior information and guide the gradient estimation process. Extensive experiments demonstrate that LaS-GSA requires fewer queries to nullify the image translation process with higher success rates than 4 state-of-the-art black-box methods.