Abstract:As language models continue to scale, Large Language Models (LLMs) have exhibited emerging capabilities in In-Context Learning (ICL), enabling them to solve language tasks by prefixing a few in-context demonstrations (ICDs) as context. Inspired by these advancements, researchers have extended these techniques to develop Large Multimodal Models (LMMs) with ICL capabilities. However, existing LMMs face a critical issue: they often fail to effectively leverage the visual context in multimodal demonstrations and instead simply follow textual patterns. This indicates that LMMs do not achieve effective alignment between multimodal demonstrations and model outputs. To address this problem, we propose Symbol Demonstration Direct Preference Optimization (SymDPO). Specifically, SymDPO aims to break the traditional paradigm of constructing multimodal demonstrations by using random symbols to replace text answers within instances. This forces the model to carefully understand the demonstration images and establish a relationship between the images and the symbols to answer questions correctly. We validate the effectiveness of this method on multiple benchmarks, demonstrating that with SymDPO, LMMs can more effectively understand the multimodal context within examples and utilize this knowledge to answer questions better.
Abstract:Large Vision Language Models exhibit remarkable capabilities but struggle with hallucinations inconsistencies between images and their descriptions. Previous hallucination evaluation studies on LVLMs have identified hallucinations in terms of objects, attributes, and relations but overlooked complex hallucinations that create an entire narrative around a fictional entity. In this paper, we introduce a refined taxonomy of hallucinations, featuring a new category: Event Hallucination. We then utilize advanced LLMs to generate and filter fine grained hallucinatory data consisting of various types of hallucinations, with a particular focus on event hallucinations, laying the groundwork for integrating discriminative and generative evaluation methods within our universal evaluation framework. The proposed benchmark distinctively assesses LVLMs ability to tackle a broad spectrum of hallucinations, making it a reliable and comprehensive tool for gauging LVLMs efficacy in handling hallucinations. We will release our code and data.