Abstract:The explosion of large-scale data in fields such as finance, e-commerce, and social media has outstripped the processing capabilities of single-machine systems, driving the need for distributed statistical inference methods. Traditional approaches to distributed inference often struggle with achieving true sparsity in high-dimensional datasets and involve high computational costs. We propose a novel, two-stage, distributed best subset selection algorithm to address these issues. Our approach starts by efficiently estimating the active set while adhering to the $\ell_0$ norm-constrained surrogate likelihood function, effectively reducing dimensionality and isolating key variables. A refined estimation within the active set follows, ensuring sparse estimates and matching the minimax $\ell_2$ error bound. We introduce a new splicing technique for adaptive parameter selection to tackle subproblems under $\ell_0$ constraints and a Generalized Information Criterion (GIC). Our theoretical and numerical studies show that the proposed algorithm correctly finds the true sparsity pattern, has the oracle property, and greatly lowers communication costs. This is a big step forward in distributed sparse estimation.
Abstract:Sparsity-constraint optimization has wide applicability in signal processing, statistics, and machine learning. Existing fast algorithms must burdensomely tune parameters, such as the step size or the implementation of precise stop criteria, which may be challenging to determine in practice. To address this issue, we develop an algorithm named Sparsity-Constraint Optimization via sPlicing itEration (SCOPE) to optimize nonlinear differential objective functions with strong convexity and smoothness in low dimensional subspaces. Algorithmically, the SCOPE algorithm converges effectively without tuning parameters. Theoretically, SCOPE has a linear convergence rate and converges to a solution that recovers the true support set when it correctly specifies the sparsity. We also develop parallel theoretical results without restricted-isometry-property-type conditions. We apply SCOPE's versatility and power to solve sparse quadratic optimization, learn sparse classifiers, and recover sparse Markov networks for binary variables. The numerical results on these specific tasks reveal that SCOPE perfectly identifies the true support set with a 10--1000 speedup over the standard exact solver, confirming SCOPE's algorithmic and theoretical merits. Our open-source Python package skscope based on C++ implementation is publicly available on GitHub, reaching a ten-fold speedup on the competing convex relaxation methods implemented by the cvxpy library.
Abstract:In high-dimensional generalized linear models, it is crucial to identify a sparse model that adequately accounts for response variation. Although the best subset section has been widely regarded as the Holy Grail of problems of this type, achieving either computational efficiency or statistical guarantees is challenging. In this article, we intend to surmount this obstacle by utilizing a fast algorithm to select the best subset with high certainty. We proposed and illustrated an algorithm for best subset recovery in regularity conditions. Under mild conditions, the computational complexity of our algorithm scales polynomially with sample size and dimension. In addition to demonstrating the statistical properties of our method, extensive numerical experiments reveal that it outperforms existing methods for variable selection and coefficient estimation. The runtime analysis shows that our implementation achieves approximately a fourfold speedup compared to popular variable selection toolkits like glmnet and ncvreg.