ETRI, Daejeon, Republic of Korea
Abstract:LLM inference is essential for applications like text summarization, translation, and data analysis, but the high cost of GPU instances from Cloud Service Providers (CSPs) like AWS is a major burden. This paper proposes InferSave, a cost-efficient VM selection framework for cloud based LLM inference. InferSave optimizes KV cache offloading based on Service Level Objectives (SLOs) and workload charac teristics, estimating GPU memory needs, and recommending cost-effective VM instances. Additionally, the Compute Time Calibration Function (CTCF) improves instance selection accuracy by adjusting for discrepancies between theoretical and actual GPU performance. Experiments on AWS GPU instances show that selecting lower-cost instances without KV cache offloading improves cost efficiency by up to 73.7% for online workloads, while KV cache offloading saves up to 20.19% for offline workloads.
Abstract:Recent large language models (LLMs) face increasing inference latency as input context length and model size continue to grow. In particular, the retrieval-augmented generation (RAG) technique, which enhances LLM responses by incorporating external knowledge, exacerbates this issue by significantly increasing the number of input tokens. This expansion in token length leads to a substantial rise in computational overhead, particularly during the prefill stage, resulting in prolonged time-to-first-token (TTFT). To address this issue, this paper proposes a method to reduce TTFT by leveraging a disk-based key-value (KV) cache to lessen the computational burden during the prefill stage. We also introduce a disk-based shared KV cache management system, called Shared RAG-DCache, for multi-instance LLM RAG service environments. This system, together with an optimal system configuration, improves both throughput and latency under given resource constraints. Shared RAG-DCache exploits the locality of documents related to user queries in RAG, as well as the queueing delay in LLM inference services. It proactively generates and stores disk KV caches for query-related documents and shares them across multiple LLM instances to enhance inference performance. In experiments on a single host equipped with 2 GPUs and 1 CPU, Shared RAG-DCache achieved a 15~71% increase in throughput and up to a 12~65% reduction in latency, depending on the resource configuration.