Abstract:Community detection (CD) on signed networks is crucial for understanding how positive and negative relations jointly shape network structure. However, existing CD methods often yield inconsistent communities due to noisy or conflicting edge signs. In this paper, we propose ReCon, a model-agnostic post-processing framework that progressively refines community structures through four iterative steps: (1) structural refinement, (2) boundary refinement, (3) contrastive learning, and (4) clustering. Extensive experiments on eighteen synthetic and four real-world networks using four CD methods demonstrate that ReCon consistently enhances community detection accuracy, serving as an effective and easily integrable solution for reliable CD across diverse network properties.
Abstract:Probabilistic confidence metrics are increasingly adopted as proxies for reasoning quality in Best-of-N selection, under the assumption that higher confidence reflects higher reasoning fidelity. In this work, we challenge this assumption by investigating whether these metrics truly capture inter-step causal dependencies necessary for valid reasoning. We introduce three classes of inter-step causality perturbations that systematically disrupt dependencies between reasoning steps while preserving local fluency. Surprisingly, across diverse model families and reasoning benchmarks, we find that selection accuracy degrades only marginally under these disruptions. Even severe interventions, such as applying hard attention masks that directly prevent the model from attending to prior reasoning steps, do not substantially reduce selection performance. These findings provide strong evidence that current probabilistic metrics are largely insensitive to logical structure, and primarily capture surface-level fluency or in-distribution priors instead. Motivated by this gap, we propose a contrastive causality metric that explicitly isolates inter-step causal dependencies, and demonstrate that it yields more faithful output selection than existing probability-based approaches.
Abstract:In this paper, we present offline-to-online knowledge distillation (OOKD) for video instance segmentation (VIS), which transfers a wealth of video knowledge from an offline model to an online model for consistent prediction. Unlike previous methods that having adopting either an online or offline model, our single online model takes advantage of both models by distilling offline knowledge. To transfer knowledge correctly, we propose query filtering and association (QFA), which filters irrelevant queries to exact instances. Our KD with QFA increases the robustness of feature matching by encoding object-centric features from a single frame supplemented by long-range global information. We also propose a simple data augmentation scheme for knowledge distillation in the VIS task that fairly transfers the knowledge of all classes into the online model. Extensive experiments show that our method significantly improves the performance in video instance segmentation, especially for challenging datasets including long, dynamic sequences. Our method also achieves state-of-the-art performance on YTVIS-21, YTVIS-22, and OVIS datasets, with mAP scores of 46.1%, 43.6%, and 31.1%, respectively.