Abstract:Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping, and leaping, and jumping take-off for transitions into flight. These capabilities have inspired engineers to aim for similar multi-modality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multi-modal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This tradeoff between mechanical complexity and versatility limits most existing aerial robots to only one additional locomotor mode. Here, we overcome the complexity-versatility tradeoff with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multi-functional legs to jump rapidly into flight, walk on ground and hop over obstacles and gaps similar to the multi-modal locomotion of birds. We show that jumping for take-off contributes substantially to initial flight take-off speed and, remarkably, that it is more energy-efficient than solely propeller-based take-off. Our analysis suggests an important tradeoff in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multi-modal gait demands. Multi-functional robot legs expand opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multi-modal gaits.
Abstract:Birds, bats and many insects can tuck their wings against their bodies at rest and deploy them to power flight. Whereas birds and bats use well-developed pectoral and wing muscles and tendons, how insects control these movements remains unclear, as mechanisms of wing deployment and retraction vary among insect species. Beetles (Coleoptera) display one of the most complex wing mechanisms. For example, in rhinoceros beetles, the wing deployment initiates by fully opening the elytra and partially releasing the hindwings from the abdomen. Subsequently, the beetle starts flapping, elevates the hindwings at the bases, and unfolds the wingtips in an origami-like fashion. Whilst the origami-like fold have been extensively explored, limited attention has been given to the hindwing base deployment and retraction, which are believed to be driven by thoracic muscles. Using high-speed cameras and robotic flapping-wing models, here we demonstrate that rhinoceros beetles can effortlessly elevate the hindwings to flight position without the need for muscular activity. We show that opening the elytra triggers a spring-like partial release of the hindwings from the body, allowing the clearance needed for subsequent flapping motion that brings the hindwings into flight position. The results also show that after flight, beetles can leverage the elytra to push the hindwings back into the resting position, further strengthening the hypothesis of a passive deployment mechanism. Finally, we validate the hypothesis with a flapping microrobot that passively deploys its wings for stable controlled flight and retracts them neatly upon landing, which offers a simple yet effective approach to the design of insect-like flying micromachines.
Abstract:Perching with winged Unmanned Aerial Vehicles has often been solved by means of complex control or intricate appendages. Here, we present a simple yet novel method that relies on passive wing morphing for crash-landing on trees and other types of vertical poles. Inspired by the adaptability of animals' and bats' limbs in gripping and holding onto trees, we design dual-purpose wings that enable both aerial gliding and perching on poles. With an upturned nose design, the robot can passively reorient from horizontal flight to vertical upon a head-on crash with a pole, followed by hugging with its wings to perch. We characterize the performance of reorientation and perching in terms of impact speed and angle, pole material, and size. The robot robustly reorients at impact angles above 15{\deg} and speeds of 3 m/s to 9 m/s, and can hold onto various pole types larger than 28% of its wingspan in diameter. We demonstrate crash-perching on tree trunks with an overall success rate of 71%. The method opens up new possibilities for the use of aerial robots in applications such as inspection, maintenance, and biodiversity conservation.