Abstract:Numerous fairness metrics have been proposed and employed by artificial intelligence (AI) experts to quantitatively measure bias and define fairness in AI models. Recognizing the need to accommodate stakeholders' diverse fairness understandings, efforts are underway to solicit their input. However, conveying AI fairness metrics to stakeholders without AI expertise, capturing their personal preferences, and seeking a collective consensus remain challenging and underexplored. To bridge this gap, we propose a new framework, EARN Fairness, which facilitates collective metric decisions among stakeholders without requiring AI expertise. The framework features an adaptable interactive system and a stakeholder-centered EARN Fairness process to Explain fairness metrics, Ask stakeholders' personal metric preferences, Review metrics collectively, and Negotiate a consensus on metric selection. To gather empirical results, we applied the framework to a credit rating scenario and conducted a user study involving 18 decision subjects without AI knowledge. We identify their personal metric preferences and their acceptable level of unfairness in individual sessions. Subsequently, we uncovered how they reached metric consensus in team sessions. Our work shows that the EARN Fairness framework enables stakeholders to express personal preferences and reach consensus, providing practical guidance for implementing human-centered AI fairness in high-risk contexts. Through this approach, we aim to harmonize fairness expectations of diverse stakeholders, fostering more equitable and inclusive AI fairness.
Abstract:Our main contribution is to show that the behaviour of kernels across multiple layers of a convolutional neural network can be approximated using a logic program. The extracted logic programs yield accuracies that correlate with those of the original model, though with some information loss in particular as approximations of multiple layers are chained together or as lower layers are quantised. We also show that an extracted program can be used as a framework for further understanding the behaviour of CNNs. Specifically, it can be used to identify key kernels worthy of deeper inspection and also identify relationships with other kernels in the form of the logical rules. Finally, we make a preliminary, qualitative assessment of rules we extract from the last convolutional layer and show that kernels identified are symbolic in that they react strongly to sets of similar images that effectively divide output classes into sub-classes with distinct characteristics.