Abstract:We study gradient flow on the exponential loss for a classification problem with a one-layer softmax attention model, where the key and query weight matrices are trained separately. Under a separability assumption on the data, we show that when gradient flow achieves the minimal loss value, it further implicitly minimizes the nuclear norm of the product of the key and query weight matrices. Such implicit regularization can be described by a Support Vector Machine (SVM) problem with respect to the attention weights. This finding contrasts with prior results showing that the gradient descent induces an implicit regularization on the Frobenius norm on the product weight matrix when the key and query matrices are combined into a single weight matrix for training. For diagonal key and query matrices, our analysis builds upon the reparameterization technique and exploits approximate KKT conditions of the SVM associated with the classification data. Moreover, the results are extended to general weights configurations given proper alignment of the weight matrices' singular spaces with the data features at initialization.
Abstract:We study the dynamics of gradient flow for training a multi-head softmax attention model for in-context learning of multi-task linear regression. We establish the global convergence of gradient flow under suitable choices of initialization. In addition, we prove that an interesting "task allocation" phenomenon emerges during the gradient flow dynamics, where each attention head focuses on solving a single task of the multi-task model. Specifically, we prove that the gradient flow dynamics can be split into three phases -- a warm-up phase where the loss decreases rather slowly and the attention heads gradually build up their inclination towards individual tasks, an emergence phase where each head selects a single task and the loss rapidly decreases, and a convergence phase where the attention parameters converge to a limit. Furthermore, we prove the optimality of gradient flow in the sense that the limiting model learned by gradient flow is on par with the best possible multi-head softmax attention model up to a constant factor. Our analysis also delineates a strict separation in terms of the prediction accuracy of ICL between single-head and multi-head attention models. The key technique for our convergence analysis is to map the gradient flow dynamics in the parameter space to a set of ordinary differential equations in the spectral domain, where the relative magnitudes of the semi-singular values of the attention weights determines task allocation. To our best knowledge, our work provides the first convergence result for the multi-head softmax attention model.
Abstract:We estimate the general influence functions for spatio-temporal Hawkes processes using a tensor recovery approach by formulating the location dependent influence function that captures the influence of historical events as a tensor kernel. We assume a low-rank structure for the tensor kernel and cast the estimation problem as a convex optimization problem using the Fourier transformed nuclear norm (TNN). We provide theoretical performance guarantees for our approach and present an algorithm to solve the optimization problem. We demonstrate the efficiency of our estimation with numerical simulations.