Abstract:Conversational recommender systems (CRSs) are designed to suggest the target item that the user is likely to prefer through multi-turn conversations. Recent studies stress that capturing sentiments in user conversations improves recommendation accuracy. However, they employ a single user representation, which may fail to distinguish between contrasting user intentions, such as likes and dislikes, potentially leading to suboptimal performance. To this end, we propose a novel conversational recommender model, called COntrasting user pReference expAnsion and Learning (CORAL). Firstly, CORAL extracts the user's hidden preferences through contrasting preference expansion using the reasoning capacity of the LLMs. Based on the potential preference, CORAL explicitly differentiates the contrasting preferences and leverages them into the recommendation process via preference-aware learning. Extensive experiments show that CORAL significantly outperforms existing methods in three benchmark datasets, improving up to 99.72% in Recall@10. The code and datasets are available at https://github.com/kookeej/CORAL
Abstract:Knowledge Tracing (KT) aims to track proficiency based on a question-solving history, allowing us to offer a streamlined curriculum. Recent studies actively utilize attention-based mechanisms to capture the correlation between questions and combine it with the learner's characteristics for responses. However, our empirical study shows that existing attention-based KT models neglect the learner's forgetting behavior, especially as the interaction history becomes longer. This problem arises from the bias that overprioritizes the correlation of questions while inadvertently ignoring the impact of forgetting behavior. This paper proposes a simple-yet-effective solution, namely Forgetting-aware Linear Bias (FoLiBi), to reflect forgetting behavior as a linear bias. Despite its simplicity, FoLiBi is readily equipped with existing attentive KT models by effectively decomposing question correlations with forgetting behavior. FoLiBi plugged with several KT models yields a consistent improvement of up to 2.58% in AUC over state-of-the-art KT models on four benchmark datasets.