Abstract:The line-of-sight (LOS) requirement of free-space optical (FSO) systems can be relaxed by employing optical intelligent reflecting surfaces (IRSs). In this paper, we model the impact of the IRS-induced delay dispersion and derive the channel impulse response (CIR) of IRS-assisted FSO links. The proposed model takes into account the characteristics of the incident and reflected beams' wavefronts, the position of transmitter and receiver, the size of the IRS, and the incident beamwidth on the IRS. Our simulation results reveal that a maximum effective delay spread of 0.7 ns is expected for a square IRS with area 1 $\mathrm{m}^2$, which induces inter-symbol interference for bit rates larger than 10 Gbps. We show that the IRS-induced delay dispersion can be mitigated via equalization at the receiver.
Abstract:In this paper, we study optical simultaneous lightwave information and power transfer (SLIPT) systems employing photovoltaic optical receivers (RXs). To be able to efficiently harvest energy from broadband light, we propose to employ multi-junction photovoltaic cells at the optical RX. We consider the case, where the optical RX is illuminated by ambient light, an intensity-modulated information free space optical (FSO) signal, and since the ambient light may not be always present, a dedicated energy-providing broadband optical signal. Based on the analysis of the equivalent electrical circuit of the multi-junction photovoltaic RX, we model the current flow through the photovoltaic cell and derive a novel accurate and two novel approximate energy harvesting (EH) models for the two cases, where the optical RX is equipped with a single and multiple p-n junctions, respectively. We derive the optimal distribution of the transmit information signal that maximizes the achievable information rate. We validate the proposed EH models by circuit simulations and show that the photovoltaic RXs saturate for high received signal powers. For single-junction RXs, we compare the proposed EH model with two well-known baseline models and demonstrate that, in contrast to the proposed EH model, they are not able to fully capture the RX non-linearity. Since multi-junction RXs allow a more efficient allocation of the optical power, they are more robust against saturation, and thus, are able to harvest significantly more power and achieve higher data rates than RXs employing a single p-n junction. Finally, we highlight a tradeoff between the information rate and harvested power in SLIPT systems and demonstrate that the proposed optimal distribution yields significantly higher achievable information rates compared to uniformly distributed transmit signals, which are optimal for linear optical information RXs.
Abstract:In this paper, we study optical simultaneous wireless information and power transfer (SWIPT) systems, where a photovoltaic optical receiver (RX) is illuminated by ambient light and an intensity-modulated free space optical (FSO) signal. To facilitate simultaneous information reception and energy harvesting (EH) at the RX, the received optical signal is first converted to an electrical signal, and then, its alternating current (AC) and direct current (DC) components are separated and utilized for information decoding and EH, respectively. By accurately analysing the equivalent electrical circuit of the photovoltaic RX, we model the current flow through the photovoltaic p-n junction in both the low and high input power regimes using a two-diode model of the p-n junction and we derive a closed-form non-linear EH model that characterizes the harvested power at the RX. Furthermore, taking into account the non-linear behaviour of the photovoltaic RX on information reception, we derive the optimal distribution of the transmit information signal that maximizes the achievable information rate. The proposed EH model is validated by circuit simulation results. Furthermore, we compare with two baseline models based on maximum power point (MPP) tracking at the RX and a single-diode p-n junction model, respectively, and demonstrate that in contrast to the proposed EH model, they are not able to fully capture the non-linearity of photovoltaic optical RXs. Finally, our numerical results highlight that the proposed optimal distribution of the transmit signal yields significantly higher achievable information rates compared to uniformly distributed transmit signals, which are optimal for linear optical information RXs.
Abstract:The line-of-sight (LOS) requirement of free-space optical (FSO) systems can be relaxed by employing optical relays or optical intelligent reflecting surfaces (IRSs). In this paper, we show that the power reflected from FSO IRSs and collected at the receiver (Rx) lens may scale quadratically or linearly with the IRS size or may saturate at a constant value. We analyze the power scaling law for optical IRSs and unveil its dependence on the wavelength, transmitter (Tx)-to-IRS and IRS-to-Rx distances, beam waist, and Rx lens size. We also consider the impact of linear, quadratic, and focusing phase shift profiles across the IRS on the power collected at the Rx lens for different IRS sizes. Our results reveal that surprisingly the powers received for the different phase shift profiles are identical, unless the IRS operates in the saturation regime. Moreover, IRSs employing the focusing (linear) phase shift profile require the largest (smallest) size to reach the saturation regime. We also compare optical IRSs in different power scaling regimes with optical relays in terms of the outage probability, diversity and coding gains, and optimal placement. Our results show that, at the expense of a higher hardware complexity, relay-assisted FSO links yield a better outage performance at high signal-to-noise-ratios (SNRs), but optical IRSs can achieve a higher performance at low SNRs. Moreover, while it is optimal to place relays equidistant from Tx and Rx, the optimal location of optical IRSs depends on the phase shift profile and the power scaling regime they operate in.
Abstract:The line-of-sight (LOS) requirement of free-space optical (FSO) systems can be relaxed by employing optical relays and optical intelligent reflecting surfaces (IRSs). Unlike radio frequency (RF) IRSs, which typically exhibit a quadratic power scaling law, the power reflected from FSO IRSs and collected at the receiver lens may scale quadratically or linearly with the IRS size or may even saturate at a constant value. We analyze the power scaling law for optical IRSs and unveil its dependence on the wavelength, transmitter (Tx)-to-IRS and IRS-to-receiver (Rx) distances, beam waist, and lens size. We compare optical IRSs in different power scaling regimes with optical relays in terms of the outage probability, diversity and coding gains, and optimal placement. Our results show that, at the expense of a higher hardware complexity, relay-assisted FSO links yield a better outage performance at high signal-to-noise-ratios (SNRs), but optical IRSs can achieve a higher performance at low SNRs. Moreover, while it is optimal to place relays equidistant from Tx and Rx, the optimal location of IRSs depends on the power scaling regime they operate in.
Abstract:In this paper, we investigate the modeling and design of intelligent reflecting surface (IRS)-assisted optical communication systems which are deployed to relax the line-of-sight (LOS) requirement in multi-link free space optical (FSO) systems. The FSO laser beams incident on the optical IRSs have a Gaussian power intensity profile and a nonlinear phase profile, whereas the plane waves in radio frequency (RF) systems have a uniform power intensity profile and a linear phase profile. Given these substantial differences, the results available for IRS-assisted RF systems are not applicable to IRS-assisted FSO systems. Therefore, we develop a new analytical channel model for point-to-point IRS-assisted FSO systems based on the Huygens-Fresnel principle. Our analytical model captures the impact of the size, position, and orientation of the IRS as well as its phase shift profile on the end-to-end channel. To allow the sharing of the optical IRS by multiple FSO links, we propose three different protocols, namely the time division (TD), IRS-division (IRSD), and IRS homogenization (IRSH) protocols. The proposed protocols address the specific characteristics of FSO systems including the non-uniformity and possible misalignment of the laser beams. Furthermore, to compare the proposed IRS sharing protocols, we analyze the bit error rate (BER) and the outage probability of IRS-assisted multi-link FSO systems in the presence of inter-link interference. Our simulation results validate the accuracy of the proposed analytical channel model for IRS-assisted FSO systems and confirm that this model is applicable for both large and intermediate IRS-receiver lens distances. Moreover, in the absence of misalignment errors, the IRSD protocol outperforms the other protocols, whereas in the presence of misalignment errors, the IRSH protocol performs significantly better than the IRSD protocol.
Abstract:Free-space optical (FSO) systems are able to offer the high data-rate, secure, and cost-efficient communication links required for applications such as wireless front- and backhauling for 5G and 6G communication networks. Despite the substantial advancement of FSO systems over the past decades, the requirement of a line-of-sight connection between transmitter and receiver remains a key limiting factor for their deployment. In this paper, we discuss the potential role of intelligent reflecting surfaces (IRSs) as a solution to relax this requirement. We present an overview of existing optical IRS technologies; compare optical IRSs with radio-frequency IRSs and optical relays; and identify various open problems for future research on IRS-assisted FSO communications.