Abstract:Converting input symbols to output audio in TTS requires modelling the durations of speech sounds. Leading non-autoregressive (NAR) TTS models treat duration modelling as a regression problem. The same utterance is then spoken with identical timings every time, unlike when a human speaks. Probabilistic models of duration have been proposed, but there is mixed evidence of their benefits. However, prior studies generally only consider speech read aloud, and ignore spontaneous speech, despite the latter being both a more common and a more variable mode of speaking. We compare the effect of conventional deterministic duration modelling to durations sampled from a powerful probabilistic model based on conditional flow matching (OT-CFM), in three different NAR TTS approaches: regression-based, deep generative, and end-to-end. Across four different corpora, stochastic duration modelling improves probabilistic NAR TTS approaches, especially for spontaneous speech. Please see https://shivammehta25.github.io/prob_dur/ for audio and resources.
Abstract:Spontaneous speech has many affective and pragmatic functions that are interesting and challenging to model in TTS (text-to-speech). However, the presence of reduced articulation, fillers, repetitions, and other disfluencies mean that text and acoustics are less well aligned than in read speech. This is problematic for attention-based TTS. We propose a TTS architecture that is particularly suited for rapidly learning to speak from irregular and small datasets while also reproducing the diversity of expressive phenomena present in spontaneous speech. Specifically, we modify an existing neural HMM-based TTS system, which is capable of stable, monotonic alignments for spontaneous speech, and add utterance-level prosody control, so that the system can represent the wide range of natural variability in a spontaneous speech corpus. We objectively evaluate control accuracy and perform a subjective listening test to compare to a system without prosody control. To exemplify the power of combining mid-level prosody control and ecologically valid data for reproducing intricate spontaneous speech phenomena, we evaluate the system's capability of synthesizing two types of creaky phonation. Audio samples are available at https://hfkml.github.io/pc_nhmm_tts/
Abstract:Neural HMMs are a type of neural transducer recently proposed for sequence-to-sequence modelling in text-to-speech. They combine the best features of classic statistical speech synthesis and modern neural TTS, requiring less data and fewer training updates, and are less prone to gibberish output caused by neural attention failures. In this paper, we combine neural HMM TTS with normalising flows for describing the highly non-Gaussian distribution of speech acoustics. The result is a powerful, fully probabilistic model of durations and acoustics that can be trained using exact maximum likelihood. Compared to dominant flow-based acoustic models, our approach integrates autoregression for improved modelling of long-range dependences such as utterance-level prosody. Experiments show that a system based on our proposal gives more accurate pronunciations and better subjective speech quality than comparable methods, whilst retaining the original advantages of neural HMMs. Audio examples and code are available at https://shivammehta25.github.io/OverFlow/