Abstract:Large Language Models (LLMs) are emerging as promising approaches to enhance session-based recommendation (SBR), where both prompt-based and fine-tuning-based methods have been widely investigated to align LLMs with SBR. However, the former methods struggle with optimal prompts to elicit the correct reasoning of LLMs due to the lack of task-specific feedback, leading to unsatisfactory recommendations. Although the latter methods attempt to fine-tune LLMs with domain-specific knowledge, they face limitations such as high computational costs and reliance on open-source backbones. To address such issues, we propose a Reflective Reinforcement Large Language Model (Re2LLM) for SBR, guiding LLMs to focus on specialized knowledge essential for more accurate recommendations effectively and efficiently. In particular, we first design the Reflective Exploration Module to effectively extract knowledge that is readily understandable and digestible by LLMs. To be specific, we direct LLMs to examine recommendation errors through self-reflection and construct a knowledge base (KB) comprising hints capable of rectifying these errors. To efficiently elicit the correct reasoning of LLMs, we further devise the Reinforcement Utilization Module to train a lightweight retrieval agent. It learns to select hints from the constructed KB based on the task-specific feedback, where the hints can serve as guidance to help correct LLMs reasoning for better recommendations. Extensive experiments on multiple real-world datasets demonstrate that our method consistently outperforms state-of-the-art methods.
Abstract:In recent years, efforts have been made to use text information for better user profiling and item characterization in recommendations. However, text information can sometimes be of low quality, hindering its effectiveness for real-world applications. With knowledge and reasoning capabilities capsuled in Large Language Models (LLMs), utilizing LLMs emerges as a promising way for description improvement. However, existing ways of prompting LLMs with raw texts ignore structured knowledge of user-item interactions, which may lead to hallucination problems like inconsistent description generation. To this end, we propose a Graph-aware Convolutional LLM method to elicit LLMs to capture high-order relations in the user-item graph. To adapt text-based LLMs with structured graphs, We use the LLM as an aggregator in graph processing, allowing it to understand graph-based information step by step. Specifically, the LLM is required for description enhancement by exploring multi-hop neighbors layer by layer, thereby propagating information progressively in the graph. To enable LLMs to capture large-scale graph information, we break down the description task into smaller parts, which drastically reduces the context length of the token input with each step. Extensive experiments on three real-world datasets show that our method consistently outperforms state-of-the-art methods.