Abstract:Hallucinations in Large Language Models (LLMs) pose a significant challenge, generating misleading or unverifiable content that undermines trust and reliability. Existing evaluation methods, such as KnowHalu, employ multi-stage verification but suffer from high computational costs. To address this, we integrate the Hughes Hallucination Evaluation Model (HHEM), a lightweight classification-based framework that operates independently of LLM-based judgments, significantly improving efficiency while maintaining high detection accuracy. We conduct a comparative analysis of hallucination detection methods across various LLMs, evaluating True Positive Rate (TPR), True Negative Rate (TNR), and Accuracy on question-answering (QA) and summarization tasks. Our results show that HHEM reduces evaluation time from 8 hours to 10 minutes, while HHEM with non-fabrication checking achieves the highest accuracy \(82.2\%\) and TPR \(78.9\%\). However, HHEM struggles with localized hallucinations in summarization tasks. To address this, we introduce segment-based retrieval, improving detection by verifying smaller text components. Additionally, our cumulative distribution function (CDF) analysis indicates that larger models (7B-9B parameters) generally exhibit fewer hallucinations, while intermediate-sized models show higher instability. These findings highlight the need for structured evaluation frameworks that balance computational efficiency with robust factual validation, enhancing the reliability of LLM-generated content.
Abstract:Over the last few years, 360$\degree$ video traffic on the network has grown significantly. A key challenge of 360$\degree$ video playback is ensuring a high quality of experience (QoE) with limited network bandwidth. Currently, most studies focus on tile-based adaptive bitrate (ABR) streaming based on single viewport prediction to reduce bandwidth consumption. However, the performance of models for single-viewpoint prediction is severely limited by the inherent uncertainty in head movement, which can not cope with the sudden movement of users very well. This paper first presents a multimodal spatial-temporal attention transformer to generate multiple viewpoint trajectories with their probabilities given a historical trajectory. The proposed method models viewpoint prediction as a classification problem and uses attention mechanisms to capture the spatial and temporal characteristics of input video frames and viewpoint trajectories for multi-viewpoint prediction. After that, a multi-agent deep reinforcement learning (MADRL)-based ABR algorithm utilizing multi-viewpoint prediction for 360$\degree$ video streaming is proposed for maximizing different QoE objectives under various network conditions. We formulate the ABR problem as a decentralized partially observable Markov decision process (Dec-POMDP) problem and present a MAPPO algorithm based on centralized training and decentralized execution (CTDE) framework to solve the problem. The experimental results show that our proposed method improves the defined QoE metric by up to 85.5\% compared to existing ABR methods.