Abstract:Over the last few years, 360$\degree$ video traffic on the network has grown significantly. A key challenge of 360$\degree$ video playback is ensuring a high quality of experience (QoE) with limited network bandwidth. Currently, most studies focus on tile-based adaptive bitrate (ABR) streaming based on single viewport prediction to reduce bandwidth consumption. However, the performance of models for single-viewpoint prediction is severely limited by the inherent uncertainty in head movement, which can not cope with the sudden movement of users very well. This paper first presents a multimodal spatial-temporal attention transformer to generate multiple viewpoint trajectories with their probabilities given a historical trajectory. The proposed method models viewpoint prediction as a classification problem and uses attention mechanisms to capture the spatial and temporal characteristics of input video frames and viewpoint trajectories for multi-viewpoint prediction. After that, a multi-agent deep reinforcement learning (MADRL)-based ABR algorithm utilizing multi-viewpoint prediction for 360$\degree$ video streaming is proposed for maximizing different QoE objectives under various network conditions. We formulate the ABR problem as a decentralized partially observable Markov decision process (Dec-POMDP) problem and present a MAPPO algorithm based on centralized training and decentralized execution (CTDE) framework to solve the problem. The experimental results show that our proposed method improves the defined QoE metric by up to 85.5\% compared to existing ABR methods.
Abstract:Multi-access edge computing (MEC) is a promising solution to the computation-intensive, low-latency rendering tasks of the metaverse. However, how to optimally allocate limited communication and computation resources at the edge to a large number of users in the metaverse is quite challenging. In this paper, we propose an adaptive edge resource allocation method based on multi-agent soft actor-critic with graph convolutional networks (SAC-GCN). Specifically, SAC-GCN models the multi-user metaverse environment as a graph where each agent is denoted by a node. Each agent learns the interplay between agents by graph convolutional networks with self-attention mechanism to further determine the resource usage for one user in the metaverse. The effectiveness of SAC-GCN is demonstrated through the analysis of user experience, balance of resource allocation, and resource utilization rate by taking a virtual city park metaverse as an example. Experimental results indicate that SAC-GCN outperforms other resource allocation methods in improving overall user experience, balancing resource allocation, and increasing resource utilization rate by at least 27%, 11%, and 8%, respectively.