Abstract:Stochastic decentralized optimization algorithms often suffer from issues such as synchronization overhead and intermittent communication. This paper proposes a $\underline{\rm F}$ully $\underline{\rm S}$tochastic $\underline{\rm P}$rimal $\underline{\rm D}$ual gradient $\underline{\rm A}$lgorithm (FSPDA) that suggests an asynchronous decentralized procedure with (i) sparsified non-blocking communication on random undirected graphs and (ii) local stochastic gradient updates. FSPDA allows multiple local gradient steps to accelerate convergence to stationarity while finding a consensual solution with stochastic primal-dual updates. For problems with smooth (possibly non-convex) objective function, we show that FSPDA converges to an $\mathrm{\mathcal{O}( {\it \sigma /\sqrt{nT}} )}$-stationary solution after $\mathrm{\it T}$ iterations without assuming data heterogeneity. The performance of FSPDA is on par with state-of-the-art algorithms whose convergence depend on static graph and synchronous updates. To our best knowledge, FSPDA is the first asynchronous algorithm that converges exactly under the non-convex setting. Numerical experiments are presented to show the benefits of FSPDA.
Abstract:Few-shot segmentation aims to train a segmentation model that can fast adapt to a novel task for which only a few annotated images are provided. Most recent models have adopted a prototype-based paradigm for few-shot inference. These approaches may have limited generalization capacity beyond the standard 1- or 5-shot settings. In this paper, we closely examine and reevaluate the fine-tuning based learning scheme that fine-tunes the classification layer of a deep segmentation network pre-trained on diverse base classes. To improve the generalizability of the classification layer optimized with sparsely annotated samples, we introduce an instance-aware data augmentation (IDA) strategy that augments the support images based on the relative sizes of the target objects. The proposed IDA effectively increases the support set's diversity and promotes the distribution consistency between support and query images. On the other hand, the large visual difference between query and support images may hinder knowledge transfer and cripple the segmentation performance. To cope with this challenge, we introduce the local consensus guided cross attention (LCCA) to align the query feature with support features based on their dense correlation, further improving the model's generalizability to the query image. The significant performance improvements on the standard few-shot segmentation benchmarks PASCAL-$5^i$ and COCO-$20^i$ verify the efficacy of our proposed method.
Abstract:Diffusion models excel at generating high-quality images and are easy to extend, making them extremely popular among active users who have created an extensive collection of diffusion models with various styles by fine-tuning base models such as Stable Diffusion. Recent work has focused on uncovering semantic and visual information encoded in various components of a diffusion model, enabling better generation quality and more fine-grained control. However, those methods target improving a single model and overlook the vastly available collection of fine-tuned diffusion models. In this work, we study the combinations of diffusion models. We propose Diffusion Cocktail (Ditail), a training-free method that can accurately transfer content information between two diffusion models. This allows us to perform diverse generations using a set of diffusion models, resulting in novel images that are unlikely to be obtained by a single model alone. We also explore utilizing Ditail for style transfer, with the target style set by a diffusion model instead of an image. Ditail offers a more detailed manipulation of the diffusion generation, thereby enabling the vast community to integrate various styles and contents seamlessly and generate any content of any style.
Abstract:Recommender Systems are built to retrieve relevant items to satisfy users' information needs. The candidate corpus usually consists of a finite set of items that are ready to be served, such as videos, products, or articles. With recent advances in Generative AI such as GPT and Diffusion models, a new form of recommendation task is yet to be explored where items are to be created by generative models with personalized prompts. Taking image generation as an example, with a single prompt from the user and access to a generative model, it is possible to generate hundreds of new images in a few minutes. How shall we attain personalization in the presence of "infinite" items? In this preliminary study, we propose a two-stage framework, namely Prompt-Model Retrieval and Generated Item Ranking, to approach this new task formulation. We release GEMRec-18K, a prompt-model interaction dataset with 18K images generated by 200 publicly-available generative models paired with a diverse set of 90 textual prompts. Our findings demonstrate the promise of generative model recommendation as a novel personalization problem and the limitations of existing evaluation metrics. We highlight future directions for the RecSys community to advance towards generative recommender systems. Our code and dataset are available at https://github.com/MAPS-research/GEMRec.