Abstract:Auditory Attention Decoding (AAD) can help to determine the identity of the attended speaker during an auditory selective attention task, by analyzing and processing measurements of electroencephalography (EEG) data. Most studies on AAD are based on scalp-EEG signals in two-speaker scenarios, which are far from real application. Ear-EEG has recently gained significant attention due to its motion tolerance and invisibility during data acquisition, making it easy to incorporate with other devices for applications. In this work, participants selectively attended to one of the four spatially separated speakers' speech in an anechoic room. The EEG data were concurrently collected from a scalp-EEG system and an ear-EEG system (cEEGrids). Temporal response functions (TRFs) and stimulus reconstruction (SR) were utilized using ear-EEG data. Results showed that the attended speech TRFs were stronger than each unattended speech and decoding accuracy was 41.3\% in the 60s (chance level of 25\%). To further investigate the impact of electrode placement and quantity, SR was utilized in both scalp-EEG and ear-EEG, revealing that while the number of electrodes had a minor effect, their positioning had a significant influence on the decoding accuracy. One kind of auditory spatial attention detection (ASAD) method, STAnet, was testified with this ear-EEG database, resulting in 93.1% in 1-second decoding window. The implementation code and database for our work are available on GitHub: https://github.com/zhl486/Ear_EEG_code.git and Zenodo: https://zenodo.org/records/10803261.
Abstract:Relating speech to EEG holds considerable importance but is challenging. In this study, a deep convolutional network was employed to extract spatiotemporal features from EEG data. Self-supervised speech representation and contextual text embedding were used as speech features. Contrastive learning was used to relate EEG features to speech features. The experimental results demonstrate the benefits of using self-supervised speech representation and contextual text embedding. Through feature fusion and model ensemble, an accuracy of 60.29% was achieved, and the performance was ranked as No.2 in Task 1 of the Auditory EEG Challenge (ICASSP 2024). The code to implement our work is available on Github: https://github.com/bobwangPKU/EEG-Stimulus-Match-Mismatch.
Abstract:To investigate the processing of speech in the brain, simple linear models are commonly used to establish a relationship between brain signals and speech features. However, these linear models are ill-equipped to model a highly dynamic and complex non-linear system like the brain. Although non-linear methods with neural networks have been developed recently, reconstructing unseen stimuli from unseen subjects' EEG is still a highly challenging task. This work presents a novel method, ConvConcatNet, to reconstruct mel-specgrams from EEG, in which the deep convolution neural network and extensive concatenation operation were combined. With our ConvConcatNet model, the Pearson correlation between the reconstructed and the target mel-spectrogram can achieve 0.0420, which was ranked as No.1 in the Task 2 of the Auditory EEG Challenge. The codes and models to implement our work will be available on Github: https://github.com/xuxiran/ConvConcatNet