Abstract:The detection of heterogeneous mental disorders based on brain readouts remains challenging due to the complexity of symptoms and the absence of reliable biomarkers. This paper introduces CAM (Cortical Anomaly Detection through Masked Image Modeling), a novel self-supervised framework designed for the unsupervised detection of complex brain disorders using cortical surface features. We employ this framework for the detection of individuals on the psychotic spectrum and demonstrate its capabilities compared to state-ofthe-art methods, achieving an AUC of 0.696 for Schizoaffective and 0.769 for Schizophreniform, without the need for any labels. Furthermore, the analysis of atypical cortical regions includes Pars Triangularis and several frontal areas, often implicated in schizophrenia, provide further confidence in our approach. Altogether, we demonstrate a scalable approach for anomaly detection of complex brain disorders based on cortical abnormalities.
Abstract:The ability to accurately detect onset of dementia is important in the treatment of the disease. Clinically, the diagnosis of Alzheimer Disease (AD) and Mild Cognitive Impairment (MCI) patients are based on an integrated assessment of psychological tests and brain imaging such as positron emission tomography (PET) and anatomical magnetic resonance imaging (MRI). In this work using two different datasets, we propose a behavior score-embedded encoder network (BSEN) that integrates regularly adminstrated psychological tests information into the encoding procedure of representing subject's restingstate fMRI data for automatic classification tasks. BSEN is based on a 3D convolutional autoencoder structure with contrastive loss jointly optimized using behavior scores from MiniMental State Examination (MMSE) and Clinical Dementia Rating (CDR). Our proposed classification framework of using BSEN achieved an overall recognition accuracy of 59.44% (3-class classification: AD, MCI and Healthy Control), and we further extracted the most discriminative regions between healthy control (HC) and AD patients.
Abstract:Electrocardiogram(ECG) is commonly used to detect cardiac irregularities such as atrial fibrillation, bradycardia, and other irregular complexes. While previous studies have achieved great accomplishment classifying these irregularities with standard 12-lead ECGs, there existed limited evidence demonstrating the utility of reduced-lead ECGs in capturing a wide-range of diagnostic information. In addition, classification model's generalizability across multiple recording sources also remained uncovered. As part of the PhysioNet Computing in Cardiology Challenge 2021, our team HaoWan AIeC, proposed Mixed-Domain Self-Attention Resnet (MDARsn) to identify cardiac abnormalities from reduced-lead ECG. Our classifiers received scores of 0.602, 0.593, 0.597, 0.591, and 0.589 (ranked 54th, 37th, 38th, 38th, and 39th) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden validation set with the evaluation metric defined by the challenge.