Abstract:Large Language Models (LLMs) can make up answers that are not real, and this is known as hallucination. This research aims to see if, how, and to what extent LLMs are aware of hallucination. More specifically, we check whether and how an LLM reacts differently in its hidden states when it answers a question right versus when it hallucinates. To do this, we introduce an experimental framework which allows examining LLM's hidden states in different hallucination situations. Building upon this framework, we conduct a series of experiments with language models in the LLaMA family (Touvron et al., 2023). Our empirical findings suggest that LLMs react differently when processing a genuine response versus a fabricated one. We then apply various model interpretation techniques to help understand and explain the findings better. Moreover, informed by the empirical observations, we show great potential of using the guidance derived from LLM's hidden representation space to mitigate hallucination. We believe this work provides insights into how LLMs produce hallucinated answers and how to make them occur less often.
Abstract:In-Context Learning (ICL) and Instruction Tuning (IT) are two primary paradigms of adopting Large Language Models (LLMs) to downstream applications. However, they are significantly different. In ICL, a set of demonstrations are provided at inference time but the LLM's parameters are not updated. In IT, a set of demonstrations are used to tune LLM's parameters in training time but no demonstrations are used at inference time. Although a growing body of literature has explored ICL and IT, studies on these topics have largely been conducted in isolation, leading to a disconnect between these two paradigms. In this work, we explore the relationship between ICL and IT by examining how the hidden states of LLMs change in these two paradigms. Through carefully designed experiments conducted with LLaMA-2 (7B and 13B), we find that ICL is implicit IT. In other words, ICL changes an LLM's hidden states as if the demonstrations were used to instructionally tune the model. Furthermore, the convergence between ICL and IT is largely contingent upon several factors related to the provided demonstrations. Overall, this work offers a unique perspective to explore the connection between ICL and IT and sheds light on understanding the behaviors of LLM.
Abstract:Transformer-based pretrained large language models (PLM) such as BERT and GPT have achieved remarkable success in NLP tasks. However, PLMs are prone to encoding stereotypical biases. Although a burgeoning literature has emerged on stereotypical bias mitigation in PLMs, such as work on debiasing gender and racial stereotyping, how such biases manifest and behave internally within PLMs remains largely unknown. Understanding the internal stereotyping mechanisms may allow better assessment of model fairness and guide the development of effective mitigation strategies. In this work, we focus on attention heads, a major component of the Transformer architecture, and propose a bias analysis framework to explore and identify a small set of biased heads that are found to contribute to a PLM's stereotypical bias. We conduct extensive experiments to validate the existence of these biased heads and to better understand how they behave. We investigate gender and racial bias in the English language in two types of Transformer-based PLMs: the encoder-based BERT model and the decoder-based autoregressive GPT model. Overall, the results shed light on understanding the bias behavior in pretrained language models.