Abstract:Deep neural networks (DNNs) have been widely and successfully adopted and deployed in various applications of speech recognition. Recently, a few works revealed that these models are vulnerable to backdoor attacks, where the adversaries can implant malicious prediction behaviors into victim models by poisoning their training process. In this paper, we revisit poison-only backdoor attacks against speech recognition. We reveal that existing methods are not stealthy since their trigger patterns are perceptible to humans or machine detection. This limitation is mostly because their trigger patterns are simple noises or separable and distinctive clips. Motivated by these findings, we propose to exploit elements of sound ($e.g.$, pitch and timbre) to design more stealthy yet effective poison-only backdoor attacks. Specifically, we insert a short-duration high-pitched signal as the trigger and increase the pitch of remaining audio clips to `mask' it for designing stealthy pitch-based triggers. We manipulate timbre features of victim audios to design the stealthy timbre-based attack and design a voiceprint selection module to facilitate the multi-backdoor attack. Our attacks can generate more `natural' poisoned samples and therefore are more stealthy. Extensive experiments are conducted on benchmark datasets, which verify the effectiveness of our attacks under different settings ($e.g.$, all-to-one, all-to-all, clean-label, physical, and multi-backdoor settings) and their stealthiness. The code for reproducing main experiments are available at \url{https://github.com/HanboCai/BadSpeech_SoE}.
Abstract:Keyword spotting (KWS) based on deep neural networks (DNNs) has achieved massive success in voice control scenarios. However, training of such DNN-based KWS systems often requires significant data and hardware resources. Manufacturers often entrust this process to a third-party platform. This makes the training process uncontrollable, where attackers can implant backdoors in the model by manipulating third-party training data. An effective backdoor attack can force the model to make specified judgments under certain conditions, i.e., triggers. In this paper, we design a backdoor attack scheme based on Voiceprint Selection and Voice Conversion, abbreviated as VSVC. Experimental results demonstrated that VSVC is feasible to achieve an average attack success rate close to 97% in four victim models when poisoning less than 1% of the training data.
Abstract:Keyword spotting (KWS) has been widely used in various speech control scenarios. The training of KWS is usually based on deep neural networks and requires a large amount of data. Manufacturers often use third-party data to train KWS. However, deep neural networks are not sufficiently interpretable to manufacturers, and attackers can manipulate third-party training data to plant backdoors during the model training. An effective backdoor attack can force the model to make specified judgments under certain conditions, i.e., triggers. In this paper, we design a backdoor attack scheme based on Pitch Boosting and Sound Masking for KWS, called PBSM. Experimental results demonstrated that PBSM is feasible to achieve an average attack success rate close to 90% in three victim models when poisoning less than 1% of the training data.